Deep neural network (DNN) usually learns the target function from low to high frequency, which is called frequency principle or spectral bias. This frequency principle sheds light on a high-frequency curse of DNNs -- difficult to learn high-frequency information. Inspired by the frequency principle, a series of works are devoted to develop algorithms for overcoming the high-frequency curse. A natural question arises: what is the upper limit of the decaying rate w.r.t. frequency when one trains a DNN? In this work, our theory, confirmed by numerical experiments, suggests that there is a critical decaying rate w.r.t. frequency in DNN training. Below the upper limit of the decaying rate, the DNN interpolates the training data by a function with a certain regularity. However, above the upper limit, the DNN interpolates the training data by a trivial function, i.e., a function is only non-zero at training data points. Our results indicate a better way to overcome the high-frequency curse is to design a proper pre-condition approach to shift high-frequency information to low-frequency one, which coincides with several previous developed algorithms for fast learning high-frequency information. More importantly, this work rigorously proves that the high-frequency curse is an intrinsic difficulty of DNNs.


翻译:深神经网络通常从低频到高频学习目标函数, 称为频率原则或光谱偏差。 这个频率原则揭示了DNN的高频诅咒 -- -- 很难学习高频信息。 受频率原则的启发, 一系列工作致力于开发克服高频诅咒的算法。 自然产生的一个问题是: 当一个培训 DNN 数据点时, 衰减率的上限是多少 w.r.t. 频率? 在这项工作中, 我们的理论得到数字实验的证实, 表明在 DNN 培训中存在一种非常严重的 w.r.t. 频率的衰变率。 在衰变率的上限之外, DNN 中间将培训数据以一定的规律化为函数。 然而, 在高于上限的情况下, DNN 将培训数据以一个微不足道的函数来循环。 也就是说, 在一个培训数据点上, 一个函数是非零的。 我们的结果表明, 克服高频诅咒的更好的方法是设计一个适当的预设方法, 将高频信息转换为低频信息的频率信息。 DNNNV 高频级的快速解释。

0
下载
关闭预览

相关内容

数字化健康白皮书,17页pdf
专知会员服务
104+阅读 · 2021年1月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
已删除
将门创投
10+阅读 · 2018年5月2日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月27日
Arxiv
0+阅读 · 2021年7月26日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
7+阅读 · 2020年6月29日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
数字化健康白皮书,17页pdf
专知会员服务
104+阅读 · 2021年1月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
已删除
将门创投
10+阅读 · 2018年5月2日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员