Bayesian optimization is a data-efficient technique which can be used for control parameter tuning, parametric policy adaptation, and structure design in robotics. Many of these problems require optimization of functions defined on non-Euclidean domains like spheres, rotation groups, or spaces of positive-definite matrices. To do so, one must place a Gaussian process prior, or equivalently define a kernel, on the space of interest. Effective kernels typically reflect the geometry of the spaces they are defined on, but designing them is generally non-trivial. Recent work on the Riemannian Mat\'ern kernels, based on stochastic partial differential equations and spectral theory of the Laplace-Beltrami operator, offers promising avenues towards constructing such geometry-aware kernels. In this paper, we study techniques for implementing these kernels on manifolds of interest in robotics, demonstrate their performance on a set of artificial benchmark functions, and illustrate geometry-aware Bayesian optimization for a variety of robotic applications, covering orientation control, manipulability optimization, and motion planning, while showing its improved performance.


翻译:Bayesian优化是一种数据效率高的技术,可用于控制参数的调整、参数政策调整和机器人的结构设计。其中许多问题要求优化在非欧洲化领域界定的功能,如球体、旋转组或正确定基质空间。要做到这一点,就必须在兴趣空间上事先或同等地界定高斯进程,在兴趣空间上确定一个内核。有效的内核通常反映所定义的空间的几何,但设计时一般是非三重性的。最近关于Riemannian Mat\'ern内核的工作,以拉皮尔-贝尔特拉米操作员的分光谱部分方程式和光谱理论为基础,为建造这种几何测量内核提供了有希望的途径。在本文中,我们研究在机器人感兴趣的方块上实施这些内核的技术,展示其在一套人工基准功能上的性能,并演示各种机器人应用的几何测量-觉优化,包括方向控制、人性优化、运动和规划,同时展示其改进的性能和性能。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
【干货书】机器学习速查手册,135页pdf
专知会员服务
123+阅读 · 2020年11月20日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Top
微信扫码咨询专知VIP会员