Deep neural networks are susceptible to adversarial attacks. In computer vision, well-crafted perturbations to images can cause neural networks to make mistakes such as identifying a panda as a gibbon or confusing a cat with a computer. Previous adversarial examples have been designed to degrade performance of models or cause machine learning models to produce specific outputs chosen ahead of time by the attacker. We introduce adversarial attacks that instead reprogram the target model to perform a task chosen by the attacker---without the attacker needing to specify or compute the desired output for each test-time input. This attack is accomplished by optimizing for a single adversarial perturbation, of unrestricted magnitude, that can be added to all test-time inputs to a machine learning model in order to cause the model to perform a task chosen by the adversary when processing these inputs---even if the model was not trained to do this task. These perturbations can be thus considered a program for the new task. We demonstrate adversarial reprogramming on six ImageNet classification models, repurposing these models to perform a counting task, as well as two classification tasks: classification of MNIST and CIFAR-10 examples presented within the input to the ImageNet model.


翻译:深心神经网络很容易受到对抗性攻击。 在计算机视觉中, 精心设计的图像扰动可能导致神经网络错误, 如将熊猫确定为螺旋形或将猫与计算机混为一体。 先前的对抗性例子旨在降低模型的性能, 或导致机器学习模型产生特定产出, 以便提前由攻击者选择。 我们引入对抗性攻击, 而不是重新编程目标模型来执行攻击者选择的任务- 攻击者不需要为每个测试时间输入指定或计算预期产出。 此次攻击是通过优化单一的对抗性扰动( 范围不限制) 来完成的。 可以在机器学习模型的所有试验时输入中添加, 以便让模型在处理这些输入时执行对手选择的任务。 即使模型没有经过训练来完成这项任务, 这些扰动可以因此被视为新任务的程序。 我们演示了6个图像网络分类模型的对抗性重新配置, 重新配置这些模型来完成一个计算任务, 并且将这些模型添加到机器学习模型的计算任务中, 作为两个分类: CIAR 和 IM IM 的模型 。

3
下载
关闭预览

相关内容

神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
29+阅读 · 2020年4月15日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Generative Adversarial Networks: A Survey and Taxonomy
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Generative Adversarial Networks: A Survey and Taxonomy
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
10+阅读 · 2018年3月23日
Top
微信扫码咨询专知VIP会员