We study estimation of the conditional law $P(Y|X=\mathbf{x})$ and continuous functionals $Ψ(P(Y|X=\mathbf{x}))$ when $Y$ takes values in a locally compact Polish space, $X \in \mathbb{R}^p$, and the observations arise from a complex survey design. We propose a survey-calibrated distributional random forest (SDRF) that incorporates complex-design features via a pseudo-population bootstrap, PSU-level honesty, and a Maximum Mean Discrepancy (MMD) split criterion computed from kernel mean embeddings of Hájek-type (design-weighted) node distributions. We provide a framework for analyzing forest-style estimators under survey designs; establish design consistency for the finite-population target and model consistency for the super-population target under explicit conditions on the design, kernel, resampling multipliers, and tree partitions. As far as we are aware, these are the first results on model-free estimation of conditional distributions under survey designs. Simulations under a stratified two-stage cluster design provide finite sample performance and demonstrate the statistical error price of ignoring the survey design. The broad applicability of SDRF is demonstrated using NHANES: We estimate the tolerance regions of the conditional joint distribution of two diabetes biomarkers, illustrating how distributional heterogeneity can support subgroup-specific risk profiling for diabetes mellitus in the U.S. population.
翻译:本文研究当Y取值于局部紧波兰空间、X∈ℝ^p且观测数据来自复杂抽样设计时,条件分布P(Y|X=𝐱)及其连续泛函Ψ(P(Y|X=𝐱))的估计问题。我们提出一种抽样校准的分布随机森林(SDRF),通过伪总体自助法、初级抽样单元层面的诚实性准则,以及基于Hájek型(设计加权)节点分布的核均值嵌入计算的最大均值差异(MMD)分裂准则,将复杂设计特征纳入估计框架。我们建立了分析抽样设计下森林类估计量的理论框架,在明确的设计条件、核函数、重抽样乘子及树划分条件下,证明了有限总体目标的设计相合性与超总体目标的模型相合性。据我们所知,这是关于抽样设计下条件分布无模型估计的首批理论结果。通过分层两阶段整群抽样的仿真实验,我们展示了有限样本性能,并量化了忽略抽样设计所带来的统计误差代价。利用美国国家健康与营养调查(NHANES)数据,我们展示了SDRF的广泛适用性:通过估计两种糖尿病生物标志物条件联合分布的容忍区域,阐明了分布异质性如何支持美国人群糖尿病亚组特异性风险分析。