We study nonlinear optimization problems with a stochastic objective and deterministic equality and inequality constraints, which emerge in numerous applications including finance, manufacturing, power systems and, recently, deep neural networks. We propose an active-set stochastic sequential quadratic programming algorithm that uses a differentiable exact augmented Lagrangian as the merit function. The algorithm adaptively selects the penalty parameters of the augmented Lagrangian, and performs stochastic line search to decide the stepsize. The global convergence is established: for any initialization, the "liminf" of the KKT residuals converges to zero almost surely. Our algorithm and analysis further develop the work of Na et al. (2021) by allowing nonlinear inequality constraints without requiring the strict complementary condition. We demonstrate the performance of the algorithm on a subset of nonlinear problems collected in CUTEst test set.
翻译:我们研究非线性优化问题,研究非线性优化问题,研究非线性优化问题,研究在金融、制造业、电力系统和最近的深神经网络等多种应用中出现的非线性优化问题,我们建议采用一种主动设置的随机相继二次二次编程算法,使用一种不同的精确增强的拉格朗江语作为功绩函数。该算法适应性地选择扩大的拉格朗江语的处罚参数,并进行随机搜索以决定步骤化。全球趋同已经确立:对于任何初始化,KKT残留物的“利因夫”几乎肯定会汇集到零。我们的算法和分析通过允许非线性不平等限制而无需严格的补充条件,进一步发展了Na等人(2021年)的工作,我们展示了CUTEst测试集集集的非线性问题的算法的性表现。