Riverine floods pose a considerable risk to many communities. Improving flood hazard projections has the potential to inform the design and implementation of flood risk management strategies. Current flood hazard projections are uncertain, especially due to uncertain model parameters. Calibration methods use observations to quantify model parameter uncertainty. With limited computational resources, researchers typically calibrate models using either relatively few expensive model runs at high spatial resolutions or many cheaper runs at lower spatial resolutions. This leads to an open question: Is it possible to effectively combine information from the high and low resolution model runs? We propose a Bayesian emulation-calibration approach that assimilates model outputs and observations at multiple resolutions. As a case study for a riverine community in Pennsylvania, we demonstrate our approach using the LISFLOOD-FP flood hazard model. The multiresolution approach results in improved parameter inference over the single resolution approach in multiple scenarios. Results vary based on the parameter values and the number of available models runs. Our method is general and can be used to calibrate other high dimensional computer models to improve projections.
翻译:改善洪水灾害预测有可能为洪水风险管理战略的设计和执行提供参考。当前洪水灾害预测不确定,特别是由于模型参数不确定。校准方法使用观测来量化模型参数不确定性。利用有限的计算资源,研究人员通常使用相对较少的昂贵模型来校准模型,以高空间分辨率运行,或以低空间分辨率运行,费用低廉的模型运行。这导致一个未决问题:能否有效地将高分辨率和低分辨率模型运行的信息结合起来?我们建议采用巴耶西亚模拟校准方法,在多个分辨率上吸收模型产出和观测。作为宾夕法尼亚州河流社区的一项案例研究,我们展示了我们使用LISFLOOD-FP洪水灾害模型的方法。多分辨率方法在多种情况下改进单一分辨率方法的参数推断结果,根据参数值和可用模型运行的数量而不同。我们的方法是一般性的,可用于校准其他高维计算机模型,以改进预测。