In this paper, we study the properties of nonparametric least squares regression using deep neural networks. We derive non-asymptotic upper bounds for the prediction error of the empirical risk minimizer for feedforward deep neural regression. Our error bounds achieve the minimax optimal rate and significantly improve over the existing ones in the sense that they depend linearly or quadratically on the dimension d of the predictor, instead of exponentially on d. We show that the neural regression estimator can circumvent the curse of dimensionality under the assumption that the predictor is supported on an approximate low-dimensional manifold. This assumption differs from the structural condition imposed on the target regression function and is weaker and more realistic than the exact low-dimensional manifold support assumption in the existing literature. We investigate how the prediction error of the neural regression estimator depends on the structure of neural networks and propose a notion of network relative efficiency between two types of neural networks, which provides a quantitative measure for evaluating the relative merits of different network structures. Our results are derived under weaker assumptions on the data distribution, the target regression function and the neural network structure than those in the existing literature.


翻译:在本文中,我们用深神经网络来研究非对称最小平方回归的特性。 我们为预测实验风险最小化的预测错误而得出非非不设防的上界值,用于预测实验风险最小化的预测错误,用于进取深神经回归。 我们的错误界限达到了微缩最大最佳率,并大大改进了现有界限,因为它们在线性或二次上依赖于预测器的维度,而不是指数值上。 我们显示神经回归估计器可以绕过维度的诅咒,假设预测器在大约低维度的多元上方得到支持。 这个假设不同于目标回归功能所设定的结构条件,比现有文献中精确的低维度多重支持假设更弱、更现实。 我们调查神经回归估计器的预测错误如何取决于神经网络的结构,并提出两种神经网络之间的网络相对效率概念,为评价不同网络结构的相对优点提供了定量衡量尺度。 我们的结果是在数据分布、目标回归函数和神经网络结构结构比现有文献中的假设更弱的情况下得出的。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
迁移学习简明教程,11页ppt
专知会员服务
106+阅读 · 2020年8月4日
已删除
将门创投
6+阅读 · 2019年7月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月27日
Arxiv
0+阅读 · 2021年6月24日
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年7月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员