Primal heuristics play a crucial role in exact solvers for Mixed Integer Programming (MIP). While solvers are guaranteed to find optimal solutions given sufficient time, real-world applications typically require finding good solutions early on in the search to enable fast decision-making. While much of MIP research focuses on designing effective heuristics, the question of how to manage multiple MIP heuristics in a solver has not received equal attention. Generally, solvers follow hard-coded rules derived from empirical testing on broad sets of instances. Since the performance of heuristics is instance-dependent, using these general rules for a particular problem might not yield the best performance. In this work, we propose the first data-driven framework for scheduling heuristics in an exact MIP solver. By learning from data describing the performance of primal heuristics, we obtain a problem-specific schedule of heuristics that collectively find many solutions at minimal cost. We provide a formal description of the problem and propose an efficient algorithm for computing such a schedule. Compared to the default settings of a state-of-the-art academic MIP solver, we are able to reduce the average primal integral by up to 49% on a class of challenging instances.
翻译:在混合整数编程(MIP)的精确解算器中,纯表面外观性能起着关键作用。虽然保证解决问题者在足够长的时间里找到最佳解决方案,但现实世界应用通常要求在寻找早期找到良好的解决方案,以便快速决策。尽管许多MIP研究的重点是设计有效的湿度学,但是,如何在解算器中管理多种MIP湿度学的问题没有得到同等重视。一般而言,解算者遵循大量实例的经验测试得出的硬编码规则。由于超度学的性能依赖实例,对特定问题使用这些通用规则也许不会产生最佳的性能。在这项工作中,我们提议在精确的MIP解算器中建立第一个由数据驱动的超量学框架。通过从描述初层外观性能表现的数据中学习,我们获得了一个问题特定的超量理论性能时间表,以最低的成本集体找到许多解决方案。我们正式描述问题并提出一个问题,并提议一个高效的算法,用于计算这样一个时间表。比起一个具有挑战性能的州级学术初等平均49级解决器的默认环境,我们可以通过一个具有挑战性的MIIP系统来降低。