Simultaneous segmentation of multiple organs from different medical imaging modalities is a crucial task as it can be utilized for computer-aided diagnosis, computer-assisted surgery, and therapy planning. Thanks to the recent advances in deep learning, several deep neural networks for medical image segmentation have been introduced successfully for this purpose. In this paper, we focus on learning a deep multi-organ segmentation network that labels voxels. In particular, we examine the critical choice of a loss function in order to handle the notorious imbalance problem that plagues both the input and output of a learning model. The input imbalance refers to the class-imbalance in the input training samples (i.e. small foreground objects embedded in an abundance of background voxels, as well as organs of varying sizes). The output imbalance refers to the imbalance between the false positives and false negatives of the inference model. We introduce a loss function that integrates a weighted cross-entropy with a Dice similarity coefficient to tackle both types of imbalance during training and inference. We evaluated the proposed loss function on three datasets of whole body PET scans with 5 target organs, MRI prostate scans, and ultrasound echocardigraphy images with a single target organ. We show that a simple network architecture with the proposed integrative loss function can outperform state-of-the-art methods and results of the competing methods can be improved when our proposed loss is used.

8
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。

U-Net has been providing state-of-the-art performance in many medical image segmentation problems. Many modifications have been proposed for U-Net, such as attention U-Net, recurrent residual convolutional U-Net (R2-UNet), and U-Net with residual blocks or blocks with dense connections. However, all these modifications have an encoder-decoder structure with skip connections, and the number of paths for information flow is limited. We propose LadderNet in this paper, which can be viewed as a chain of multiple U-Nets. Instead of only one pair of encoder branch and decoder branch in U-Net, a LadderNet has multiple pairs of encoder-decoder branches, and has skip connections between every pair of adjacent decoder and decoder branches in each level. Inspired by the success of ResNet and R2-UNet, we use modified residual blocks where two convolutional layers in one block share the same weights. A LadderNet has more paths for information flow because of skip connections and residual blocks, and can be viewed as an ensemble of Fully Convolutional Networks (FCN). The equivalence to an ensemble of FCNs improves segmentation accuracy, while the shared weights within each residual block reduce parameter number. Semantic segmentation is essential for retinal disease detection. We tested LadderNet on two benchmark datasets for blood vessel segmentation in retinal images, and achieved superior performance over methods in the literature. The implementation is provided \url{https://github.com/juntang-zhuang/LadderNet}

0
6
下载
预览

Medical image segmentation is a primary task in many applications, and the accuracy of the segmentation is a necessity. Recently, many deep learning networks derived from U-Net have been extensively used and have achieved notable results. To further improve and refine the performance of U-Net, parallel decoders along with mask prediction decoder have been carried out and have shown significant improvement with additional advantages. In our work, we utilize the advantages of using a combination of contour and distance map as regularizers. In turn, we propose a novel architecture Psi-Net with a single encoder and three parallel decoders, one decoder to learn the mask and other two to learn the auxiliary tasks of contour detection and distance map estimation. The learning of these auxiliary tasks helps in capturing the shape and boundary. We also propose a new joint loss function for the proposed architecture. The loss function consists of a weighted combination of Negative likelihood and Mean Square Error loss. We have used two publicly available datasets: 1) Origa dataset for the task of optic cup and disc segmentation and 2) Endovis segment dataset for the task of polyp segmentation to evaluate our model. We have conducted extensive experiments using our network to show our model gives better results in terms of segmentation, boundary and shape metrics.

0
6
下载
预览

Decision making in automated driving is highly specific to the environment and thus semantic segmentation plays a key role in recognizing the objects in the environment around the car. Pixel level classification once considered a challenging task which is now becoming mature to be productized in a car. However, semantic annotation is time consuming and quite expensive. Synthetic datasets with domain adaptation techniques have been used to alleviate the lack of large annotated datasets. In this work, we explore an alternate approach of leveraging the annotations of other tasks to improve semantic segmentation. Recently, multi-task learning became a popular paradigm in automated driving which demonstrates joint learning of multiple tasks improves overall performance of each tasks. Motivated by this, we use auxiliary tasks like depth estimation to improve the performance of semantic segmentation task. We propose adaptive task loss weighting techniques to address scale issues in multi-task loss functions which become more crucial in auxiliary tasks. We experimented on automotive datasets including SYNTHIA and KITTI and obtained 3% and 5% improvement in accuracy respectively.

0
4
下载
预览

Radiologist is "doctor's doctor", biomedical image segmentation plays a central role in quantitative analysis, clinical diagnosis, and medical intervention. In the light of the fully convolutional networks (FCN) and U-Net, deep convolutional networks (DNNs) have made significant contributions in biomedical image segmentation applications. In this paper, based on U-Net, we propose MDUnet, a multi-scale densely connected U-net for biomedical image segmentation. we propose three different multi-scale dense connections for U shaped architectures encoder, decoder and across them. The highlights of our architecture is directly fuses the neighboring different scale feature maps from both higher layers and lower layers to strengthen feature propagation in current layer. Which can largely improves the information flow encoder, decoder and across them. Multi-scale dense connections, which means containing shorter connections between layers close to the input and output, also makes much deeper U-net possible. We adopt the optimal model based on the experiment and propose a novel Multi-scale Dense U-Net (MDU-Net) architecture with quantization. Which reduce overfitting in MDU-Net for better accuracy. We evaluate our purpose model on the MICCAI 2015 Gland Segmentation dataset (GlaS). The three multi-scale dense connections improve U-net performance by up to 1.8% on test A and 3.5% on test B in the MICCAI Gland dataset. Meanwhile the MDU-net with quantization achieves the superiority over U-Net performance by up to 3% on test A and 4.1% on test B.

1
8
下载
预览

Fully convolutional deep neural networks have been asserted to be fast and precise frameworks with great potential in image segmentation. One of the major challenges in utilizing such networks raises when data is unbalanced, which is common in many medical imaging applications such as lesion segmentation where lesion class voxels are often much lower in numbers than non-lesion voxels. A trained network with unbalanced data may make predictions with high precision and low recall, being severely biased towards the non-lesion class which is particularly undesired in medical applications where false negatives are actually more important than false positives. Various methods have been proposed to address this problem including two step training, sample re-weighting, balanced sampling, and similarity loss functions. In this paper we developed a patch-wise 3D densely connected network with an asymmetric loss function, where we used large overlapping image patches for intrinsic and extrinsic data augmentation, a patch selection algorithm, and a patch prediction fusion strategy based on B-spline weighted soft voting to take into account the uncertainty of prediction in patch borders. We applied this method to lesion segmentation based on the MSSEG 2016 and ISBI 2015 challenges, where we achieved average Dice similarity coefficient of 69.9% and 65.74%, respectively. In addition to the proposed loss, we trained our network with focal and generalized Dice loss functions. Significant improvement in $F_1$ and $F_2$ scores and the APR curve was achieved in test using the asymmetric similarity loss layer and our 3D patch prediction fusion. The asymmetric similarity loss based on $F_\beta$ scores generalizes the Dice similarity coefficient and can be effectively used with the patch-wise strategy developed here to train fully convolutional deep neural networks for highly unbalanced image segmentation.

0
4
下载
预览

Recently, dense connections have attracted substantial attention in computer vision because they facilitate gradient flow and implicit deep supervision during training. Particularly, DenseNet, which connects each layer to every other layer in a feed-forward fashion, has shown impressive performances in natural image classification tasks. We propose HyperDenseNet, a 3D fully convolutional neural network that extends the definition of dense connectivity to multi-modal segmentation problems. Each imaging modality has a path, and dense connections occur not only between the pairs of layers within the same path, but also between those across different paths. This contrasts with the existing multi-modal CNN approaches, in which modeling several modalities relies entirely on a single joint layer (or level of abstraction) for fusion, typically either at the input or at the output of the network. Therefore, the proposed network has total freedom to learn more complex combinations between the modalities, within and in-between all the levels of abstraction, which increases significantly the learning representation. We report extensive evaluations over two different and highly competitive multi-modal brain tissue segmentation challenges, iSEG 2017 and MRBrainS 2013, with the former focusing on 6-month infant data and the latter on adult images. HyperDenseNet yielded significant improvements over many state-of-the-art segmentation networks, ranking at the top on both benchmarks. We further provide a comprehensive experimental analysis of features re-use, which confirms the importance of hyper-dense connections in multi-modal representation learning. Our code is publicly available at https://www.github.com/josedolz/HyperDenseNet.

0
6
下载
预览

The Jaccard index, also referred to as the intersection-over-union score, is commonly employed in the evaluation of image segmentation results given its perceptual qualities, scale invariance - which lends appropriate relevance to small objects, and appropriate counting of false negatives, in comparison to per-pixel losses. We present a method for direct optimization of the mean intersection-over-union loss in neural networks, in the context of semantic image segmentation, based on the convex Lov\'asz extension of submodular losses. The loss is shown to perform better with respect to the Jaccard index measure than the traditionally used cross-entropy loss. We show quantitative and qualitative differences between optimizing the Jaccard index per image versus optimizing the Jaccard index taken over an entire dataset. We evaluate the impact of our method in a semantic segmentation pipeline and show substantially improved intersection-over-union segmentation scores on the Pascal VOC and Cityscapes datasets using state-of-the-art deep learning segmentation architectures.

0
4
下载
预览

This work presents a region-growing image segmentation approach based on superpixel decomposition. From an initial contour-constrained over-segmentation of the input image, the image segmentation is achieved by iteratively merging similar superpixels into regions. This approach raises two key issues: (1) how to compute the similarity between superpixels in order to perform accurate merging and (2) in which order those superpixels must be merged together. In this perspective, we firstly introduce a robust adaptive multi-scale superpixel similarity in which region comparisons are made both at content and common border level. Secondly, we propose a global merging strategy to efficiently guide the region merging process. Such strategy uses an adpative merging criterion to ensure that best region aggregations are given highest priorities. This allows to reach a final segmentation into consistent regions with strong boundary adherence. We perform experiments on the BSDS500 image dataset to highlight to which extent our method compares favorably against other well-known image segmentation algorithms. The obtained results demonstrate the promising potential of the proposed approach.

0
4
下载
预览

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

0
10
下载
预览

Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.

0
10
下载
预览
小贴士
相关论文
Psi-Net: Shape and boundary aware joint multi-task deep network for medical image segmentation
Balamurali Murugesan,Kaushik Sarveswaran,Sharath M Shankaranarayana,Keerthi Ram,Mohanasankar Sivaprakasam
6+阅读 · 2019年2月11日
AuxNet: Auxiliary tasks enhanced Semantic Segmentation for Automated Driving
Sumanth Chennupati,Ganesh Sistu,Senthil Yogamani,Samir Rawashdeh
4+阅读 · 2019年1月17日
MDU-Net: Multi-scale Densely Connected U-Net for biomedical image segmentation
Jiawei Zhang,Yuzhen Jin,Jilan Xu,Xiaowei Xu,Yanchun Zhang
8+阅读 · 2018年12月4日
Asymmetric Similarity Loss Function to Balance Precision and Recall in Highly Unbalanced Deep Medical Image Segmentation
Seyed Raein Hashemi,Seyed Sadegh Mohseni Salehi,Deniz Erdogmus,Sanjay P. Prabhu,Simon K. Warfield,Ali Gholipour
4+阅读 · 2018年6月29日
Jose Dolz,Karthik Gopinath,Jing Yuan,Herve Lombaert,Christian Desrosiers,Ismail Ben Ayed
6+阅读 · 2018年4月9日
Mahaman Sani Chaibou,Pierre-Henri Conze,Karim Kalti,Basel Solaiman,Mohamed Ali Mahjoub
4+阅读 · 2018年3月17日
Fahim Irfan Alam,Jun Zhou,Alan Wee-Chung Liew,Xiuping Jia,Jocelyn Chanussot,Yongsheng Gao
10+阅读 · 2017年12月27日
Top