In recent years various supervised learning methods that disentangle aleatoric and epistemic uncertainty based on second-order distributions have been proposed. We argue that these methods fail to capture critical components of epistemic uncertainty, particularly due to the often-neglected component of model bias. To show this, we make use of a more fine-grained taxonomy of epistemic uncertainty sources in machine learning models, and analyse how the classical bias-variance decomposition of the expected prediction error can be decomposed into different parts reflecting these uncertainties. By using a simulation-based evaluation protocol which encompasses epistemic uncertainty due to both procedural- and data-driven uncertainty components, we illustrate that current methods rarely capture the full spectrum of epistemic uncertainty. Through theoretical insights and synthetic experiments, we show that high model bias can lead to misleadingly low estimates of epistemic uncertainty, and common second-order uncertainty quantification methods systematically blur bias-induced errors into aleatoric estimates, thereby underrepresenting epistemic uncertainty. Our findings underscore that meaningful aleatoric estimates are feasible only if all relevant sources of epistemic uncertainty are properly represented.


翻译:近年来,基于二阶分布来分离偶然不确定性与认知不确定性的多种监督学习方法已被提出。我们认为,这些方法未能捕捉认知不确定性的关键组成部分,尤其是常被忽视的模型偏差成分。为证明这一点,我们采用了一种更细粒度的机器学习模型认知不确定性来源分类法,并分析了预期预测误差的经典偏差-方差分解如何能分解为反映这些不确定性的不同部分。通过采用一种基于模拟的评估方案,该方案同时涵盖由过程驱动和数据驱动的不确定性成分引起的认知不确定性,我们阐明当前方法很少能捕捉认知不确定性的完整谱系。借助理论洞见与合成实验,我们表明高模型偏差可能导致对认知不确定性的误导性低估,而常见的二阶不确定性量化方法系统性地将偏差引起的误差模糊归入偶然性估计中,从而低估了认知不确定性。我们的研究结果强调,只有当所有相关的认知不确定性来源得到恰当表征时,有意义的偶然性估计才可能实现。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员