Layer 1 (L1) blockchains such as Ethereum are secured under an "honest supermajority of stake" assumption for a large pool of validators who verify each and every transaction on it. This high security comes at a scalability cost which not only effects the throughput of the blockchain but also results in high gas fees for executing transactions on chain. The most successful solution for this problem is provided by optimistic rollups, Layer 2 (L2) blockchains that execute transactions outside L1 but post the transaction data on L1. The security for such L2 chains is argued, informally, under the assumption that a set of nodes will check the transaction data posted on L1 and raise an alarm (a fraud proof) if faulty transactions are detected. However, all current deployments lack a proper incentive mechanism for ensuring that these nodes will do their job ``diligently'', and simply rely on a cursory incentive alignment argument for security. We solve this problem by introducing an incentivized watchtower network designed to serve as the first line of defense for rollups. Our main contribution is a ``Proof of Diligence'' protocol that requires watchtowers to continuously provide a proof that they have verified L2 assertions and get rewarded for the same. Proof of Diligence protocol includes a carefully-designed incentive mechanism that is provably secure when watchtowers are rational actors, under a mild rational independence assumption. Our proposed system is now live on Ethereum testnet. We deployed a watchtower network and implemented Proof of Diligence for multiple optimistic rollups. We extract execution as well as inclusion proofs for transactions as a part of the bounty. Each watchtower has minimal additional computational overhead beyond access to standard L1 and L2 RPC nodes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员