Mobility performance has been a key focus in cellular networks up to 5G. To enhance handover (HO) performance, 3GPP introduced Conditional Handover (CHO) and Layer 1/Layer 2 Triggered Mobility (LTM) mechanisms in 5G. While these reactive HO strategies address the trade-off between HO failures (HOF) and ping-pong effects, they often result in inefficient radio resource utilization due to additional HO preparations. To overcome these challenges, this article proposes a proactive HO framework for mobility management in O-RAN, leveraging user-cell link predictions to identify the optimal target cell for HO. We explore various categories of Graph Neural Networks (GNNs) for link prediction and analyze the complexity of applying them to the mobility management domain. Two GNN models are compared using a real-world dataset, with experimental results demonstrating their ability to capture the dynamic and graph-structured nature of cellular networks. Finally, we present key insights from our study and outline future steps to enable the integration of GNN-based link prediction for mobility management in O-RAN networks.
翻译:移动性性能一直是蜂窝网络直至5G时代的关键关注点。为提升切换性能,3GPP在5G中引入了条件切换(CHO)以及层1/层2触发移动性(LTM)机制。尽管这些反应式切换策略在切换失败(HOF)与乒乓效应之间实现了权衡,但由于额外的切换准备,它们往往导致无线资源利用率低下。为克服这些挑战,本文提出一种面向O-RAN移动性管理的主动式切换框架,该框架利用用户-小区链路预测来识别最优切换目标小区。我们探索了用于链路预测的多种图神经网络(GNN)类别,并分析了将其应用于移动性管理领域的复杂性。使用真实世界数据集对两种GNN模型进行了比较,实验结果表明它们能够捕捉蜂窝网络的动态与图结构特性。最后,我们总结了本研究的关键见解,并概述了未来步骤,以推动基于GNN的链路预测在O-RAN网络移动性管理中的集成。