Machine learning models have emerged as a very effective strategy to sidestep time-consuming electronic-structure calculations, enabling accurate simulations of greater size, time scale and complexity. Given the interpolative nature of these models, the reliability of predictions depends on the position in phase space, and it is crucial to obtain an estimate of the error that derives from the finite number of reference structures included during the training of the model. When using a machine-learning potential to sample a finite-temperature ensemble, the uncertainty on individual configurations translates into an error on thermodynamic averages, and provides an indication for the loss of accuracy when the simulation enters a previously unexplored region. Here we discuss how uncertainty quantification can be used, together with a baseline energy model, or a more robust although less accurate interatomic potential, to obtain more resilient simulations and to support active-learning strategies. Furthermore, we introduce an on-the-fly reweighing scheme that makes it possible to estimate the uncertainty in the thermodynamic averages extracted from long trajectories. We present examples covering different types of structural and thermodynamic properties, and systems as diverse as water and liquid gallium.


翻译:机器学习模型已经成为一种非常有效的战略,可以绕过耗时的电子结构计算,从而能够进行更精确的体积、时间尺度和复杂程度的模拟。鉴于这些模型的内推性质,预测的可靠性取决于阶段空间的位置,因此关键是要从模型培训期间包含的参考结构有限数量中获得对错误的估计。当利用机器学习潜力对有限温度组合进行取样时,个别配置的不确定性会转化为热力平均值上的错误,并表明当模拟进入以前未勘探的区域时准确性会丧失。我们在这里讨论如何使用不确定性的量化,同时使用基线能源模型,或更强但不太准确的内核潜力,以获得更具弹性的模拟,并支持积极的学习战略。此外,我们引入了一种在空中学习的模型,以便能够估计从长期轨迹中提取的热力平均值的不确定性。我们举例说明了不同类型的结构和热力动力特性,以及作为水和液体的不同系统。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
51+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
专知会员服务
158+阅读 · 2020年1月16日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年3月11日
Dynamical Pose Estimation
Arxiv
1+阅读 · 2021年3月10日
Arxiv
0+阅读 · 2021年3月10日
Arxiv
0+阅读 · 2021年3月8日
VIP会员
相关资讯
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员