In this work, we build upon the Active Inference (AIF) and Predictive Coding (PC) frameworks to propose a neural architecture comprising a generative model for sensory prediction, and a distinct generative model for motor trajectories. We highlight how sequences of sensory predictions can act as rails guiding learning, control and online adaptation of motor trajectories. We furthermore inquire the effects of bidirectional interactions between the motor and the visual modules. The architecture is tested on the control of a simulated robotic arm learning to reproduce handwritten letters.
翻译:在这项工作中,我们以主动推断和预测编码框架为基础,提出一个神经结构,其中包括感官预测的基因模型和运动轨迹的独特的基因模型。我们强调感测预测的序列如何作为铁路,指导运动轨迹的学习、控制和在线适应。我们进一步调查发动机和视觉模块之间的双向相互作用的影响。该结构在模拟机器人手臂学习复制手写字母的控制方面进行了测试。