Machine learning applications such as finance and medicine demand accurate and justifiable predictions, barring most deep learning methods from use. In response, previous work combines decision trees with deep learning, yielding models that (1) sacrifice interpretability for accuracy or (2) sacrifice accuracy for interpretability. We forgo this dilemma by jointly improving accuracy and interpretability using Neural-Backed Decision Trees (NBDTs). NBDTs replace a neural network's final linear layer with a differentiable sequence of decisions and a surrogate loss. This forces the model to learn high-level concepts and lessens reliance on highly-uncertain decisions, yielding (1) accuracy: NBDTs match or outperform modern neural networks on CIFAR, ImageNet and better generalize to unseen classes by up to 16%. Furthermore, our surrogate loss improves the original model's accuracy by up to 2%. NBDTs also afford (2) interpretability: improving human trustby clearly identifying model mistakes and assisting in dataset debugging. Code and pretrained NBDTs are at https://github.com/alvinwan/neural-backed-decision-trees.


翻译:金融和医学等机器学习应用要求准确和合理的预测,不允许使用最深层次的学习方法。作为回应,先前的工作将决策树与深层次的学习结合起来,产生模型(1) 牺牲解释准确性,(2) 牺牲准确性,(2) 牺牲解释性。我们放弃这一两难困境,共同提高精确性和解释性,使用神经包装决定树(NBDTs)来提高准确性和解释性。NBDTs取代神经网络最后线性层,采用不同的决策序列和代谢性损失。这迫使模型学习高层次的概念,减少对高度不精确决定的依赖,产生(1) 准确性:(1) NBDTs在CIFAR、图像网络上匹配或超越现代神经网络,并更好地推广到高达16%的隐蔽班级。此外,我们的推测性损失将原始模型的准确性提高到2%。NBDDTs还提供(2) 可解释性:通过明确识别模型错误和协助数据解调。代码和预先培训的NBDDTDTs位于https://github.com/alvinwan/neal-fard-stepend-dection-dections。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
33+阅读 · 2020年12月28日
【EMNLP2020】序列知识蒸馏进展,44页ppt
专知会员服务
38+阅读 · 2020年11月21日
【EMNLP2020】自然语言处理模型可解释性预测,182页ppt
专知会员服务
50+阅读 · 2020年11月19日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月24日
DeepViT: Towards Deeper Vision Transformer
Arxiv
0+阅读 · 2021年3月22日
Arxiv
0+阅读 · 2021年3月22日
Arxiv
0+阅读 · 2021年3月21日
Arxiv
0+阅读 · 2021年3月20日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
Arxiv
3+阅读 · 2018年10月11日
VIP会员
相关资讯
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年3月24日
DeepViT: Towards Deeper Vision Transformer
Arxiv
0+阅读 · 2021年3月22日
Arxiv
0+阅读 · 2021年3月22日
Arxiv
0+阅读 · 2021年3月21日
Arxiv
0+阅读 · 2021年3月20日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
Arxiv
3+阅读 · 2018年10月11日
Top
微信扫码咨询专知VIP会员