Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining. However, most of these models based on neighborhood aggregation are usually shallow and lack the "graph pooling" mechanism, which prevents the model from obtaining adequate global information. In order to increase the receptive field, we propose a novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification. H-GCN first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node. Instead of merely aggregating one- or two-hop neighborhood information, the proposed coarsening procedure enlarges the receptive field for each node, hence more global information can be captured. The proposed H-GCN model shows strong empirical performance on various public benchmark graph datasets, outperforming state-of-the-art methods and acquiring up to 5.9% performance improvement in terms of accuracy. In addition, when only a few labeled samples are provided, our model gains substantial improvements.


翻译:在网络采矿的节点分类任务中,成功地应用了图变网络(GCNs),然而,以邻里汇总为基础的大多数模型通常是浅浅的,缺乏“绘图集合”机制,使模型无法获得足够的全球信息。为了扩大可接受域,我们提议建立一个新型的深层次纵向图变网络(H-GCN),用于半监督节点分类。H-GCN首先反复将结构上与超节点相似的节点汇总起来,然后将粗略图改进为恢复每个节点代表点的原始代表点。拟议的粗略分析程序不仅只是汇总一或二个热点信息,而且还扩大了每个节点的可接受域,因此可以捕捉更多的全球信息。拟议的H-GCN模型显示了各种公共基准图表数据集的有力经验表现,优于最先进的最新方法,并在准确性方面获得高达5.9%的性能改进。此外,如果只提供少量贴标签的样本,那么我们的模型就会大大改进。

3
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
专知会员服务
59+阅读 · 2020年3月19日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
已删除
Arxiv
31+阅读 · 2020年3月23日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
15+阅读 · 2019年4月4日
Arxiv
12+阅读 · 2018年9月15日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
专知会员服务
59+阅读 · 2020年3月19日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员