For Hamiltonian systems, simulation algorithms that exactly conserve numerical energy or pseudo-energy have seen extensive investigation. Most available methods either require the iterative solution of nonlinear algebraic equations at each time step, or are explicit, but where the exact conservation property depends on the exact evaluation of an integral in continuous time. Under further restrictions, namely that the potential energy contribution to the Hamiltonian is non-negative, newer techniques based on invariant energy quadratisation allow for exact numerical energy conservation and yield linearly implicit updates, requiring only the solution of a linear system at each time step. In this article, it is shown that, for a general class of Hamiltonian systems, and under the non-negativity condition on potential energy, it is possible to arrive at a fully explicit method that exactly conserves numerical energy. Furthermore, such methods are unconditionally stable, and are of comparable computational cost to the very simplest integration methods (such as Stormer-Verlet). A variant of this scheme leading to a conditionally-stable method is also presented, and follows from a splitting of the potential energy. Various numerical results are presented, in the case of the classic test problem of Fermi, Pasta and Ulam, as well as for nonlinear systems of partial differential equations, including those describing high amplitude vibration of strings and plates.
翻译:对于汉密尔顿系统来说,精确保存数字能源或伪能源的模拟算法已经经历了广泛的调查。大多数可用的方法要么要求每步一步都采用非线性代数方程式的迭代解决方案,要么是明确的,但确切的保存财产取决于对一个整体连续时间的准确评价。进一步的限制,即对汉密尔顿系统的潜在能源贡献是非负性的,基于不变化能源四分制的更新技术允许精确的数字能源节约,并产生线性隐含的更新,每步只需要一个线性系统的解决办法。在文章中显示,对于汉密尔顿系统的一般类别和潜在能源的非增强性条件下,有可能达成一个完全明确的方法,精确地保存数字能源。此外,这些方法是无条件稳定的,具有与最简单集成的集成方法(如Stormerer-Verlet)相近的计算成本。这个方法的变式还导致一个有条件的线性方法,并随着潜在能源的分解而出现。本文章表明,对于汉密尔密尔顿系统而言,在潜在能源的无线性条件下,可以形成一个完全清晰的平方平方平方平方平方平方平方平方,这些平方平方平的平方平方,作为典型的平方平方平的平方平方的平方平方平方平方平方的平方的平方。