As stability testing execution logs can be very long, software engineers need help in locating anomalous events. We develop and evaluate two models for scoring individual log-events for anomalousness, namely an N-Gram model and a Deep Learning model with LSTM (Long short-term memory). Both are trained on normal log sequences only. We evaluate the models with long log sequences of Android stability testing in our company case and with short log sequences from HDFS (Hadoop Distributed File System) public dataset. We evaluate next event prediction accuracy and computational efficiency. The N-Gram model is more accurate in stability testing logs (0.848 vs 0.831), whereas almost identical accuracy is seen in HDFS logs (0.849 vs 0.847). The N-Gram model has superior computational efficiency compared to the Deep model (4 to 13 seconds vs 16 minutes to nearly 4 hours), making it the preferred choice for our case company. Scoring individual log events for anomalousness seems like a good aid for root cause analysis of failing test cases, and our case company plans to add it to its online services. Despite the recent surge in using deep learning in software system anomaly detection, we found no benefits in doing so. However, future work should consider whether our finding holds with different LSTM-model hyper-parameters, other datasets, and with other deep-learning approaches that promise better accuracy and computational efficiency than LSTM based models.


翻译:由于稳定性测试执行日志可能很长,软件工程师需要帮助定位异常事件。我们开发和评价两种模型,用于为异常事件评分单日志,即N-Gram模型和LSTM(长短期内存)的深学习模型。两种模型都只接受正常日志序列的培训。我们用公司案例的Android稳定性测试的长日志序列和从HDFS(Hatoop 分布式文件系统)公开数据集的短日志序列来评估模型。我们评估下一个事件的预测准确性和计算效率。N-Gram模型在稳定性测试日志(0.848848对0.831)中更为准确,而HDFS日志(0.849对0.847)中则几乎相同准确。N-Gram模型比深模型(4至13秒对16分钟至近4小时进行长期稳定测试)的计算效率测试。我们评估了这些模型的首选。我们分析案例的单个日志事件似乎有助于对失败的测试案例进行根源分析。N-Gram模型(0.848和0.831)中,而我们的案例公司计划几乎相同精确的精确的精确的精确的精确的准确性记录模型将维持着它的未来探测系统。我们将来的运行系统。我们是如何的测算。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
78+阅读 · 2020年2月3日
专知会员服务
118+阅读 · 2019年12月24日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
11+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
27+阅读 · 2020年12月24日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
11+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员