We evaluate the robustness of Adversarial Logit Pairing, a recently proposed defense against adversarial examples. We find that a network trained with Adversarial Logit Pairing achieves 0.6% accuracy in the threat model in which the defense is considered. We provide a brief overview of the defense and the threat models/claims considered, as well as a discussion of the methodology and results of our attack, which may offer insights into the reasons underlying the vulnerability of ALP to adversarial attack.


翻译:我们评估了Adversarial Logit Pairing的稳健性,这是最近针对对抗性例子提出的辩护建议。我们发现,一个接受过Adversarial Logit Pairing培训的网络在考虑辩护的威胁模式中达到了0.6%的准确度。我们简要概述了辩护和考虑的威胁模式/主张,并讨论了我们攻击的方法和结果,这可能有助于深入了解ALP易受对抗性攻击的原因。

8
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
4+阅读 · 2018年5月14日
VIP会员
相关资讯
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员