We study the problem of estimating the derivatives of the regression function, which has a wide range of applications as a key nonparametric functional of unknown functions. Standard analysis may be tailored to specific derivative orders, and parameter tuning remains a daunting challenge particularly for high-order derivatives. In this article, we propose a simple plug-in kernel ridge regression (KRR) estimator in nonparametric regression with random design that is broadly applicable for multi-dimensional support and arbitrary mixed-partial derivatives. We provide a non-asymptotic analysis to study the behavior of the proposed estimator, leading to two error bounds for a general class of kernels under the strong $L_\infty$ norm. In a concrete example specialized to kernels with polynomially decaying eigenvalues, the proposed estimator recovers the minimax optimal rate up to a logarithmic factor for estimating derivatives of functions in H\"older class. Interestingly, the proposed estimator achieves the optimal rate of convergence with the same choice of tuning parameter for any order of derivatives. Hence, the proposed estimator enjoys a remarkable \textit{plug-in property} for derivatives in that it automatically adapts to the order of derivatives to be estimated, enabling easy tuning in practice. Our simulation studies show favorable finite sample performance of the proposed method relative to several existing methods.


翻译:我们研究回归函数衍生物的估算问题,回归函数具有广泛的应用范围,是未知函数的关键非参数功能。标准分析可以针对具体的衍生物订单进行定制,参数调整仍然是一项艰巨的挑战,对于高阶衍生物来说尤其如此。在本篇文章中,我们提议在非参数回归中用随机设计来估算非参数内内内心脊脊脊回归(KRR)估计值,该随机设计可广泛适用于多维支持和任意混合部分衍生物。我们提供非测试性分析,以研究拟议估算器的行为,导致在$+infty美元这一强规范下对一般类核心子进行两个错误的界限。在一个具体实例中,我们专门针对具有多元素腐蚀性腐蚀性皮层的内心脊脊脊回归(KRRR)估计值。拟议估算器将微缩最大最佳比率恢复到一个对估算H\older 类功能衍生物衍生物衍生物衍生物衍生物衍生物的对数的对数系数。有趣的是,拟议估算器的偏向任何易变衍生物的模拟模型研究中,将采用一种可变现的定式方法。

0
下载
关闭预览

相关内容

专知会员服务
30+阅读 · 2021年6月12日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
0+阅读 · 2021年7月27日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员