Precision medicine aims to tailor treatment decisions according to patients' characteristics. G-estimation and dynamic weighted ordinary least squares (dWOLS) are double robust statistical methods that can be used to identify optimal adaptive treatment strategies. They require both a model for the outcome and a model for the treatment and are consistent if at least one of these models is correctly specified. It is underappreciated that these methods additionally require modeling all existing treatment-confounder interactions to yield consistent estimators. Identifying partially adaptive treatment strategies that tailor treatments according to only a few covariates, ignoring some interactions, may be preferable in practice. It has been proposed to combine inverse probability weighting and G-estimation to address this issue, but we argue that the resulting estimator is not expected to be double robust. Building on G-estimation and dWOLS, we propose alternative estimators of partially adaptive strategies and demonstrate their double robustness. We investigate and compare the empirical performance of six estimators in a simulation study. As expected, estimators combining inverse probability weighting with either G-estimation or dWOLS are biased when the treatment model is incorrectly specified. The other estimators are unbiased if either the treatment or the outcome model are correctly specified and have similar standard errors. Using data maintained by the Centre des Maladies du Sein, the methods are illustrated to estimate a partially adaptive treatment strategy for tailoring hormonal therapy use in breast cancer patients according to their estrogen receptor status and body mass index. R software implementing our estimators is provided.


翻译:精密医学旨在根据病人的特征调整治疗决定。G估计和动态加权普通最低方(dWOLS)是双重稳健的统计方法,可用于确定最佳适应性治疗战略,它们需要结果模型和治疗模型,如果至少正确指定了这些模型之一,这些方法就具有一致性。我们没有认识到,这些方法还需要模拟所有现有的治疗基础互动,以产生一致的估测器。在实践上,确定部分适应性治疗战略,仅根据少数共变法调整治疗,而忽略某些互动,可能更为可取。已经提议将偏差加权和G估计结合起来,以解决这一问题,但我们认为,由此产生的估计不会是双倍的。在G估计和dWOLS的基础上,我们建议对部分适应性战略进行替代性估算,并显示其双倍强性。我们在模拟研究中,对六个估算机构的经验性绩效进行调查和比较,正如预期,将精确的精确度的精确度的精确度比重与精确度的精确度测算法结合的精确度和精确度测算法,如果精确度的测算为正度的测算结果,则使用模拟的测算法或测算中心,其测算结果的测算法是精确的测算结果,则使用。

1
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2020年12月4日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年1月11日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员