Autonomous driving perceives its surroundings for decision making, which is one of the most complex scenarios in visual perception. The success of paradigm innovation in solving the 2D object detection task inspires us to seek an elegant, feasible, and scalable paradigm for fundamentally pushing the performance boundary in this area. To this end, we contribute the BEVDet paradigm in this paper. BEVDet performs 3D object detection in Bird-Eye-View (BEV), where most target values are defined and route planning can be handily performed. We merely reuse existing modules to build its framework but substantially develop its performance by constructing an exclusive data augmentation strategy and upgrading the Non-Maximum Suppression strategy. In the experiment, BEVDet offers an excellent trade-off between accuracy and time-efficiency. As a fast version, BEVDet-Tiny scores 31.2% mAP and 39.2% NDS on the nuScenes val set. It is comparable with FCOS3D, but requires just 11% computational budget of 215.3 GFLOPs and runs 9.2 times faster at 15.6 FPS. Another high-precision version dubbed BEVDet-Base scores 39.3% mAP and 47.2% NDS, significantly exceeding all published results. With a comparable inference speed, it surpasses FCOS3D by a large margin of +9.8% mAP and +10.0% NDS. The source code is publicly available for further research at https://github.com/HuangJunJie2017/BEVDet .


翻译:自主驱动能感觉到决策的周围环境,这是视觉认知中最复杂的情景之一。在解决 2D 对象探测任务方面,范式创新的成功激励我们寻找一个优雅、可行和可扩展的范式,从根本上推展这个区域的业绩界限。为此,我们贡献了本文中的BEVDet范式。BEVDet在Bird-Eye-View(BEV)中执行3D对象探测,其中大多数目标值都是确定的,路线规划可以顺利完成。我们只是重新利用现有的模块来构建框架,但通过构建一个独家数据增强战略和升级非Meximum 目标探测战略来大大发展其绩效。在实验中,BEVDDet提供了精准和时间效率之间的极佳平衡。作为快速版本,BEVDDED-T-Tiny分数为31.2% mAP和39.2% NDS。它与 FCOSS3D的计算预算只有11%,在15.6 FPSDS 上运行9.2,另一个高PS+MDS 版本的高级读取率为393。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
24+阅读 · 2020年3月11日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员