We study the problem of efficiently estimating the effect of an intervention on a single variable (atomic interventions) using observational samples in a causal Bayesian network. Our goal is to give algorithms that are efficient in both time and sample complexity in a non-parametric setting. Tian and Pearl (AAAI `02) have exactly characterized the class of causal graphs for which causal effects of atomic interventions can be identified from observational data. We make their result quantitative. Suppose P is a causal model on a set $\vec{V}$ of n observable variables with respect to a given causal graph G with observable distribution $P$. Let $P_x$ denote the interventional distribution over the observables with respect to an intervention of a designated variable X with x. Assuming that $G$ has bounded in-degree, bounded c-components ($k$), and that the observational distribution is identifiable and satisfies certain strong positivity condition, we give an algorithm that takes $m=\tilde{O}(n\epsilon^{-2})$ samples from $P$ and $O(mn)$ time, and outputs with high probability a description of a distribution $\hat{P}$ such that $d_{\mathrm{TV}}(P_x, \hat{P}) \leq \epsilon$, and: 1. [Evaluation] the description can return in $O(n)$ time the probability $\hat{P}(\vec{v})$ for any assignment $\vec{v}$ to $\vec{V}$ 2. [Generation] the description can return an iid sample from $\hat{P}$ in $O(n)$ time. We also show lower bounds for the sample complexity showing that our sample complexity has an optimal dependence on the parameters $n$ and $\epsilon$, as well as if $k=1$ on the strong positivity parameter.


翻译:我们研究使用因果贝雅人网络中的观测样本对单一变量(原子干预{原子干预{原子干预})有效估计干预影响的问题。我们的目标是在非参数环境下提供在时间和样本复杂性上都有效的算法。天和珍珠(AAI`02)精确地标明了从观察数据中可以确定原子干预因果效应的因果图表类别。我们将结果量化。假设P是针对一个特定因果图形G(美元)设定的可观察变量(美元)的因果模型。让美元(美元)在可观测分布上的因果图形G(美元)。让美元(美元)相对于美元(美元)的因果变量,让美元(美元)的干扰分布分布在非参数上有效。假设美元(美元)在水平上、受约束的c-成分(k美元),观察的分布可以识别并满足某些强的实性条件。我们给出了一个从美元(美元)和美元(美元)的因果(美元)的标值样本,在时间(美元)中可以显示美元(美元)的回报。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
8+阅读 · 2018年7月12日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员