Named data networking (NDN) constructs a network by names, providing a flexible and decentralized way to manage resources within the edge computing continuum. This paper aims to solve the question, "Given a function with its parameters and metadata, how to select the executor in a distributed manner and obtain the result in NDN?" To answer it, we design R2 that involves the following stages. First, we design a name structure including data, function names, and other function parameters. Second, we develop a 2-phase mechanism, where in the first phase, the function request from a client-first reaches the data source and retrieves the metadata, then the best node is selected while the metadata is responding to the client. In the second phase, the chosen node directly retrieves the data, executes the function, and provides the result to the client. Furthermore, we propose a stop condition to intelligently reduce the processing time of the first phase and provide a simple proof and range analysis. Simulations confirm that R2 outperforms the current solutions in terms of resource allocation, especially when the data volume and the function complexity are high. In the experiments, when the data size is 100 KiB and the function complexity is $\mathcal{O}(n^2)$, the speedup ratio is 4.61. To further evaluate R2, we also implement a general intermediate data processing logic named ``Bolt'' implemented on an app-level in ndnSIM. We believe that R2 shall help the researchers and developers to verify their ideas smoothly.


翻译:命名数据网络 (NDN) 以名称构建一个网络, 提供灵活和分散的方式管理边缘计算连续中的资源。 本文旨在解答一个问题, “ 以参数和元数据提供功能, 如何以分布方式选择执行者, 并获得 NNDN 的结果? ” 为了回答这个问题, 我们设计 R2, 包括以下阶段。 首先, 我们设计一个名称结构, 包括数据、 函数名称和其他功能参数 。 第二, 我们开发一个二阶段机制, 在第一阶段, 客户端先到数据源并检索元数据, 然后在元数据响应客户时选择最佳节点 。 在第二阶段, 选择的节点直接检索数据, 执行函数, 并向客户提供结果 。 此外, 我们提出一个停止条件, 明智地缩短第一阶段的处理时间, 并提供简单的证据和范围分析 。 模拟确认 R2 在资源分配方面比当前解决方案快得多, 特别是当数据量量和函数复杂性高的时候 。 在实验中, 将数据级别 IM 进行 。 。 在 KI\ 的 运行中, 当数据大小 运行时, 将持续 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员