"Pebble games," an abstraction from classical reversible computing, have found use in the design of quantum circuits for inherently sequential tasks. Gidney showed that allowing Hadamard basis measurements during pebble games can dramatically improve costs -- an extension termed "spooky pebble games" because the measurements leave temporary phase errors called ghosts. In this work, we define and study parallel spooky pebble games. Previous work by Blocki, Holman, and Lee (TCC 2022) and Gidney studied the benefits offered by either parallelism or spookiness individually; here we show that these resources can yield impressive gains when used together. First, we show by construction that a line graph of length $\ell$ can be pebbled in depth $2\ell$ (which is exactly optimal) using space $\leq 2.47\log \ell$. Then, to explore pebbling schemes using even less space, we use a highly optimized $A^*$ search implemented in Julia to find the lowest-depth parallel spooky pebbling possible for a range of concrete line graph lengths $\ell$ given a constant number of pebbles $s$. We show that these techniques can be applied to Regev's factoring algorithm (Journal of the ACM 2025) to significantly reduce the cost of its arithmetic. For example, we find that 4096-bit integers $N$ can be factored in multiplication depth 193, which outperforms the 680 required of previous variants of Regev and the 444 reported by Eker{\aa} and G\"artner for Shor's algorithm (IACR Communications in Cryptology 2025). While space-optimized implementations of Shor's algorithm remain likely the best candidates for first quantum factorization of large integers, our results show that Regev's algorithm may have practical importance in the future, especially given the possibility of further optimization. Finally, we believe our pebbling techniques will find applications in quantum cryptanalysis beyond integer factorization.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
25+阅读 · 2021年6月25日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
24+阅读 · 2018年10月24日
The Matrix Calculus You Need For Deep Learning
Arxiv
12+阅读 · 2018年7月2日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
25+阅读 · 2021年6月25日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
24+阅读 · 2018年10月24日
The Matrix Calculus You Need For Deep Learning
Arxiv
12+阅读 · 2018年7月2日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员