The advent of Autonomous Driving Systems (ADS) has marked a significant shift towards intelligent transportation, with implications for public safety and traffic efficiency. While these systems integrate a variety of technologies and offer numerous benefits, their security is paramount, as vulnerabilities can have severe consequences for safety and trust. This study aims to systematically investigate potential security weaknesses in the codebases of prominent open-source ADS projects using CodeQL, a static code analysis tool. The goal is to identify common vulnerabilities, their distribution and persistence across versions to enhance the security of ADS. We selected three representative open-source ADS projects, Autoware, AirSim, and Apollo, based on their high GitHub star counts and Level 4 autonomous driving capabilities. Using CodeQL, we analyzed multiple versions of these projects to identify vulnerabilities, focusing on CWE categories such as CWE-190 (Integer Overflow or Wraparound) and CWE-20 (Improper Input Validation). We also tracked the lifecycle of these vulnerabilities across software versions. This approach allows us to systematically analyze vulnerabilities in projects, which has not been extensively explored in previous ADS research. Our analysis revealed that specific CWE categories, particularly CWE-190 (59.6%) and CWE-20 (16.1%), were prevalent across the selected ADS projects. These vulnerabilities often persisted for over six months, spanning multiple version iterations. The empirical assessment showed a direct link between the severity of these vulnerabilities and their tangible effects on ADS performance. These security issues among ADS still remain to be resolved. Our findings highlight the need for integrating static code analysis into ADS development to detect and mitigate common vulnerabilities.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员