Implicit Neural Representations (INRs) have been demonstrated to achieve state-of-the-art compression of a broad range of modalities such as images, videos, 3D surfaces, and audio. Most studies have focused on building neural counterparts of traditional implicit representations of 3D geometries, such as signed distance functions. However, the triangle mesh-based representation of geometry remains the most widely used representation in the industry, while building INRs capable of generating them has been sparsely studied. In this paper, we present a method for building compact INRs of zero-genus 3D manifolds. Our method relies on creating a spherical parameterization of a given 3D mesh - mapping the surface of a mesh to that of a unit sphere - then constructing an INR that encodes the displacement vector field defined continuously on its surface that regenerates the original shape. The compactness of our representation can be attributed to its hierarchical structure, wherein it first recovers the coarse structure of the encoded surface before adding high-frequency details to it. Once the INR is computed, 3D meshes of arbitrary resolution/connectivity can be decoded from it. The decoding can be performed in real time while achieving a state-of-the-art trade-off between reconstruction quality and the size of the compressed representations.


翻译:隐式神经表示(INRs)已被证明能在图像、视频、三维曲面及音频等多种模态的压缩中达到最先进的性能。大多数研究集中于构建传统三维几何隐式表示(如符号距离函数)的神经对应物。然而,基于三角形网格的几何表示在工业界仍是最广泛使用的形式,而能够生成此类网格的INRs却鲜有研究。本文提出了一种构建零亏格三维流形紧凑INRs的方法。该方法首先为给定三维网格创建球面参数化——将网格表面映射至单位球面——随后构建一个INR,用于编码在其表面连续定义的位移矢量场,从而重建原始形状。该表示的紧凑性源于其分层结构:先恢复编码曲面的粗粒度结构,再逐步添加高频细节。一旦INR计算完成,即可从中解码出任意分辨率/连接关系的三维网格。解码过程可实时进行,并在重建质量与压缩表示大小之间实现了当前最优的权衡。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员