In this article, we report the growth of gold nanorods on glass substrates and copper nanoparticle thin films by cylindrical direct current magnetron sputtering (CDCMS) at room temperature. The grown gold nanorods have short lengths of < 20nm and show negative optical parameters in UV-Vis region. So far negative permittivity and permeability were only shown for complex artificial structures. In a case of simple structures like gold nanorods, the negative optical parameters were only predicted by simulation methods and considering ideal structures and they were not yet reported by experimental groups, who has grown or synthesis gold nanorods by physical or chemical methods. The small size of gold nanorods and thickness of our samples compare to other experimental groups could be the reason of negative permittivity and permeability in our case. Low loss metamaterials with simultaneously negative permittivity and permeability are desired for practical applications in many optical devices such as optical switching, waveguides, modulators, and plasmonic antenna arrays. The optical properties of the grown gold nanorods were defined by ultraviolet- visible (UV-Vis) spectroscopy and their quality was assessed through multi-technique characterization using transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and energy dispersed X-ray (EDX).


翻译:在本文中,我们报告在室温下,圆柱形直接直流磁铁在室温下喷发(CDCMS),在玻璃基底和铜纳米薄膜中,金纳米器的生长情况。生长的金纳米器的长度短于20海里,显示UV-Vis区域有负光学参数。到目前为止,只对复杂的人工结构显示负允许性和渗透性。在像金纳米器这样的简单结构中,负光学参数仅通过模拟方法预测,并考虑到理想结构,而实验团体尚未报告这些参数,它们已经通过物理或化学方法种植或合成金纳米器。金纳米器的大小和我们样品与其他实验组的厚度相比,这可能是我们案例的负允许性和可渗透性原因。对于许多光转换、波导、调、调控和质谱天线阵列等软件的实际应用,低损的元材料需要使用光学转换、甚低度光谱、高压、高射线、高射线、高射线、高射线、高射线、高射线、高射力、高射线、高射力、高射线、高射影、高射力、高射影、高射压、超光谱、超光谱、超光谱、高、高射力、高射力、高射力、高射压、超光光谱、高光谱、高光谱、超光谱、超光谱、高射场、高射场、高射场、高射场、甚、高光谱、超、甚光谱、高、甚、甚、甚、低、甚光谱、甚光谱、低、低、低、低、低、低、低光谱、低光谱场、甚、甚、甚、甚、低、低、低光谱、低光谱、低光谱、低光谱场、甚、低、低、低、低、低、低、低、低光谱、甚光谱、低光谱、甚光谱、甚)。

0
下载
关闭预览

相关内容

专知会员服务
109+阅读 · 2020年3月12日
专知会员服务
61+阅读 · 2020年3月4日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
17+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Arxiv
3+阅读 · 2017年11月12日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员