Graph rewriting is a popular tool for the optimisation and modification of graph expressions in domains such as compilers, machine learning and quantum computing. The underlying data structures are often port graphs - graphs with labels at edge endpoints. These port labels greatly simplify pattern matching. A pre-requisite for graph rewriting is the ability to find subgraphs of the input that match known graph identities: the pattern matching problem. We propose a new solution to pattern matching in port graphs. Its novelty lies in the use of a pre-computed data structure that makes the pattern matching runtime complexity independent of the number of patterns. The runtime is bound by the maximum width $w$ and depth $d$ of the patterns, as well as the input graph size $|G|$ as $O(|G| \cdot c^w / w^{1/2} \cdot d)$ with $c = 6.75$. This offers a significant advantage over existing solutions for use cases where patterns have low width and the set of patterns is large and fixed ahead of time. In the context of quantum circuits, pattern width can be limited to qubit number. Quantum superoptimisers may use thousands of rewrite rules on circuits with less than 5 qubits, making them an ideal use case. We provide benchmarks showing that our algorithm offers a 20x speedup over current implementations on a dataset of 10'000 real world patterns describing quantum circuits.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2023年8月28日
Arxiv
19+阅读 · 2022年10月6日
Arxiv
12+阅读 · 2021年7月26日
Arxiv
31+阅读 · 2021年6月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
11+阅读 · 2023年8月28日
Arxiv
19+阅读 · 2022年10月6日
Arxiv
12+阅读 · 2021年7月26日
Arxiv
31+阅读 · 2021年6月30日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员