By a theorem of Johansson, every triangle-free graph $G$ of maximum degree $\Delta$ has chromatic number at most $(C+o(1))\Delta/\log \Delta$ for some universal constant $C > 0$. Using the entropy compression method, Molloy proved that one can in fact take $C = 1$. Here we show that for every $q \geq (1 + o(1))\Delta/\log \Delta$, the number $c(G,q)$ of proper $q$-colorings of $G$ satisfies $c(G, q) \,\geq\, \left(1 - \frac{1}{q}\right)^m ((1-o(1))q)^n$, where $n = |V(G)|$ and $m = |E(G)|$. Except for the $o(1)$ term, this lower bound is best possible as witnessed by random $\Delta$-regular graphs. When $q = (1 + o(1)) \Delta/\log \Delta$, our result yields the inequality $c(G,q) \,\geq\, \exp\left((1 - o(1)) \frac{\log \Delta}{2} n\right)$, which implies the optimal lower bound on the number of independent sets in $G$ due to Davies, Jenssen, Perkins, and Roberts. An important ingredient in our proof is the counting method that was recently developed by Rosenfeld. As a byproduct, we obtain an alternative proof of Molloy's bound $\chi(G) \leq (1 + o(1))\Delta/\log \Delta$ using Rosenfeld's method in place of entropy compression.


翻译:根据约翰森的理论,每个没有三角的图形$G$, 最大程度为$Delta$, 以(C+o(1))\Delta/\log\Delta$的色数最多为$(C+o(1))\Delta/Delta$, 一些通用常数$C > 0美元。 使用 entropy 压缩方法, Molloy 证明, 一个人实际上可以花费$C=1美元。 这里我们显示, 对于每美元\geq(1+o(1))\Delta/ log$, 美元(G,q)$(美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元。

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
70+阅读 · 2021年12月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
70+阅读 · 2020年5月5日
因果图,Causal Graphs,52页ppt
专知会员服务
240+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
已删除
将门创投
8+阅读 · 2019年8月28日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月13日
Arxiv
0+阅读 · 2021年12月12日
Arxiv
0+阅读 · 2021年12月11日
VIP会员
相关VIP内容
【硬核书】树与网络上的概率,716页pdf
专知会员服务
70+阅读 · 2021年12月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
70+阅读 · 2020年5月5日
因果图,Causal Graphs,52页ppt
专知会员服务
240+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
8+阅读 · 2019年8月28日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
相关论文
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月13日
Arxiv
0+阅读 · 2021年12月12日
Arxiv
0+阅读 · 2021年12月11日
Top
微信扫码咨询专知VIP会员