Perkovic对使用Python编程的介绍:作为应用程序开发的重点,第二版不仅仅是对编程的介绍。这是一本包罗万象的计算机科学入门书,采用了“在正确的时间使用正确的工具”的教学方法,并侧重于应用程序开发。该方法是实践和问题导向的,与实践问题和解决方案出现在整个文本。文本是命令式的,但并不回避在适当的时候尽早讨论对象。关于用户定义类和面向对象编程的讨论将在后面的课文中出现,当学生有更多的背景知识和概念时,可以激发他们的学习动机。章节包括问题解决技术和经典算法的介绍,问题解决和编程以及将核心技能应用于应用程序开发的方法。本版本还包括在更广泛的领域中提供的示例和实践问题。另一章的案例研究是独家威利E-Text,为学生提供实际应用的概念和工具,涵盖在章节中。

成为VIP会员查看完整内容
0
37

相关内容

Python是一种面向对象的解释型计算机程序设计语言,在设计中注重代码的可读性,同时也是一种功能强大的通用型语言。

O'Brien对信息系统的介绍继续反映了企业范围的业务应用程序的发展。来自堪萨斯大学的George Marakas作为合著者加入了这个新版本。新的现实世界案例研究与这种课程转变相适应。本文的重点是教一般业务经理如何使用和管理用于企业协作的最新IT技术,如Internet、内部网和外联网,以及它如何有助于竞争优势、重新设计业务流程、解决问题和决策。

成为VIP会员查看完整内容
0
23

这本教科书通过提供实用的建议,使用直接的例子,并提供相关应用的引人入胜的讨论,以一种容易理解的方式介绍了基本的机器学习概念。主要的主题包括贝叶斯分类器,最近邻分类器,线性和多项式分类器,决策树,神经网络,和支持向量机。后面的章节展示了如何通过“推进”的方式结合这些简单的工具,如何在更复杂的领域中利用它们,以及如何处理各种高级的实际问题。有一章专门介绍流行的遗传算法。

这个修订的版本包含关于工业中机器学习的实用应用的关键主题的三个全新的章节。这些章节研究了多标签域,无监督学习和它在深度学习中的使用,以及归纳逻辑编程的逻辑方法。许多章节已经被扩展,并且材料的呈现已经被增强。这本书包含了许多新的练习,许多解决的例子,深入的实验,和独立工作的计算机作业。

https://link.springer.com/book/10.1007/978-3-319-63913-0#about

成为VIP会员查看完整内容
0
115

有兴趣的数据科学专业人士可以通过本书学习Scikit-Learn图书馆以及机器学习的基本知识。本书结合了Anaconda Python发行版和流行的Scikit-Learn库,演示了广泛的有监督和无监督机器学习算法。通过用Python编写的清晰示例,您可以在家里自己的机器上试用和试验机器学习的原理。

所有的应用数学和编程技能需要掌握的内容,在这本书中涵盖。不需要深入的面向对象编程知识,因为工作和完整的例子被提供和解释。必要时,编码示例是深入和复杂的。它们也简洁、准确、完整,补充了介绍的机器学习概念。使用示例有助于建立必要的技能,以理解和应用复杂的机器学习算法。

对于那些在机器学习方面追求职业生涯的人来说,Scikit-Learn机器学习应用手册是一个很好的起点。学习这本书的学生将学习基本知识,这是胜任工作的先决条件。读者将接触到专门为数据科学专业人员设计的蟒蛇分布,并将在流行的Scikit-Learn库中构建技能,该库是Python世界中许多机器学习应用程序的基础。

你将学习

  • 使用Scikit-Learn中常见的简单和复杂数据集
  • 将数据操作为向量和矩阵,以进行算法处理
  • 熟悉数据科学中使用的蟒蛇分布
  • 应用带有分类器、回归器和降维的机器学习
  • 优化算法并为每个数据集找到最佳算法
  • 从CSV、JSON、Numpy和panda格式加载数据并保存为这些格式

这本书是给谁的

  • 有抱负的数据科学家渴望通过掌握底层的基础知识进入机器学习领域,而这些基础知识有时在急于提高生产力的过程中被忽略了。一些面向对象编程的知识和非常基本的线性代数应用将使学习更容易,尽管任何人都可以从这本书获益。
成为VIP会员查看完整内容
0
123

作为布尔逻辑的替代

虽然逻辑是理性推理的数学基础和计算的基本原理,但它仅限于信息既完整又确定的问题。然而,许多现实世界的问题,从金融投资到电子邮件过滤,本质上是不完整或不确定的。概率论和贝叶斯计算共同提供了一个处理不完整和不确定数据的框架。

不完全和不确定数据的决策工具和方法

贝叶斯编程强调概率是布尔逻辑的替代选择,它涵盖了为真实世界的应用程序构建概率程序的新方法。本书由设计并实现了一个高效概率推理引擎来解释贝叶斯程序的团队编写,书中提供了许多Python示例,这些示例也可以在一个补充网站上找到,该网站还提供了一个解释器,允许读者试验这种新的编程方法。

原则和建模

只需要一个基本的数学基础,本书的前两部分提出了一种新的方法来建立主观概率模型。作者介绍了贝叶斯编程的原理,并讨论了概率建模的良好实践。大量简单的例子突出了贝叶斯建模在不同领域的应用。

形式主义和算法

第三部分综合了已有的贝叶斯推理算法的工作,因为需要一个高效的贝叶斯推理引擎来自动化贝叶斯程序中的概率演算。对于想要了解贝叶斯编程的形式主义、主要的概率模型、贝叶斯推理的通用算法和学习问题的读者,本文提供了许多参考书目。

常见问题

第四部分连同词汇表包含了常见问题的答案。作者比较了贝叶斯规划和可能性理论,讨论了贝叶斯推理的计算复杂性,讨论了不完全性的不可约性,讨论了概率的主观主义和客观主义认识论。

贝叶斯计算机的第一步

创建一个完整的贝叶斯计算框架需要新的建模方法、新的推理算法、新的编程语言和新的硬件。本书着重于方法论和算法,描述了实现这一目标的第一步。它鼓励读者探索新兴领域,例如仿生计算,并开发新的编程语言和硬件架构。

成为VIP会员查看完整内容
0
127

这本全面的教科书向读者介绍了博弈论的主要思想和应用,以一种结合了严谨性和可达性的风格。Steven Tadelis从对理性决策的简明描述开始,接着讨论了具有完全信息的策略性和广泛的形式博弈、贝叶斯博弈和具有不完全信息的广泛的形式博弈。他涵盖了一系列的主题,包括多阶段重复博弈、讨价还价理论、拍卖、寻租博弈、机制设计、信号博弈、信誉构建和信息传递博弈。与其他博弈论书籍不同,这本书从理性的概念开始,通过诸如主导策略和理性化等概念,探讨其对多人决策问题的影响。只有这样,它才提出了纳什均衡及其导数的问题。

《博弈论》是高等本科和研究生的理想教材。在整个过程中,概念和方法是解释使用真实世界的例子支持精确的分析材料。这本书有许多重要的应用经济学和政治学,以及大量的练习,集中在如何正式的非正式情况,然后分析他们。

介绍博弈论的核心思想和应用 包含静态和动态博弈,包含完整和不完整的信息 提供各种各样的例子、应用程序和练习 主题包括重复博弈、讨价还价、拍卖、信号、声誉和信息传输 适合本科及研究生 为教师提供完整的解决方案,为学生提供精选的解决方案

成为VIP会员查看完整内容
0
105

本书通过提供真实的案例研究和示例,为使用Python库进行机器学习提供了坚实的基础。它涵盖了诸如机器学习基础、Python入门、描述性分析和预测分析等主题。包括高级机器学习概念,如决策树学习、随机森林、增强、推荐系统和文本分析。这本书在理论理解和实际应用之间采取了一种平衡的方法。所有的主题都包括真实世界的例子,并提供如何探索、构建、评估和优化机器学习模型的逐步方法。

成为VIP会员查看完整内容
Machine Learning using Python by Manaranjan Pradhan.pdf
0
185

这本教科书解释的概念和技术需要编写的程序,可以有效地处理大量的数据。面向项目和课堂测试,这本书提出了一些重要的算法,由例子支持,给计算机程序员面临的问题带来意义。计算复杂性的概念也被介绍,演示什么可以和不可以被有效地计算,以便程序员可以对他们使用的算法做出明智的判断。特点:包括介绍性和高级数据结构和算法的主题,与序言顺序为那些各自的课程在前言中提供; 提供每个章节的学习目标、复习问题和编程练习,以及大量的说明性例子; 在相关网站上提供可下载的程序和补充文件,以及作者提供的讲师资料; 为那些来自不同的语言背景的人呈现Python的初级读本。

成为VIP会员查看完整内容
0
93

创建健壮的软件需要使用高效的算法,但是程序员在问题出现之前很少考虑这些算法。这个更新版的算法简而言之描述了大量现有的算法,用于解决各种各样的问题,并帮助您选择和实现适合您需要的正确算法—只需足够的数学知识就可以让您理解和分析算法的性能。

本书的重点是应用,而不是理论,它提供了几种编程语言的高效代码解决方案,您可以轻松地适应特定的项目。每个主要算法都以设计模式的形式呈现,其中包含帮助您理解为什么以及何时使用该算法的信息。

有了这本书,你将: 解决特定的编码问题或改进现有解决方案的性能 快速定位与您想要解决的问题相关的算法,并确定为什么使用特定的算法是正确的 通过实现技巧获得C、c++、Java和Ruby中的算法解决方案 了解一个算法的预期性能,以及它需要在最佳状态下执行的条件 发现相似的设计决策对不同算法的影响 学习先进的数据结构,提高算法的效率

成为VIP会员查看完整内容
0
90

本书简介:

这本书介绍了数据类型(简单和结构化)和算法与图形和文本的解释。在下一节中,您将介绍简单和复杂的标准算法及其流程图:所有内容都与解释和表集成在一起,以提供算法的逐步发展。

主要的算法有:循环中三个或n个数字的和、十进制到二进制的转换、最大和最小搜索、线性/顺序搜索、二进制搜索、冒泡排序、选择排序、两个排序数组的合并、从文件中读取字符、堆栈管理、阶乘和斐波那契序列。

C语言算法介绍的最后一部分是C语言的介绍和代码的实现,这部分是与所研究的算法相关的。这本书充满了屏幕截图和说明代码意义的插图。

你会学到什么

  • 在C语言中实现算法
  • 处理变量、常量、基本类型和结构化类型
  • 使用数组、堆栈、队列、图、树、散列表、记录和文件
  • 探索算法的设计
  • 解决搜索问题,包括二分查找、排序和冒泡/选择排序
  • 用阶乘函数和斐波那契数列编制递归算法

这本书是给谁看的

初级入门:对于任何第一次学习计算机科学和信息系统的人来说,它都是一个起点。

目录:

成为VIP会员查看完整内容
0
78

总结

对象是Java、Python、c#等语言的核心概念。应用对象设计的最佳实践意味着您的代码将易于读、写和维护。对象设计风格指南捕捉了几十种创建高质量的OO代码的技术,这些代码可以经受住时间的考验。这些例子都是非常熟悉的伪代码,您可以将这些教学技术应用于任何OO语言,从c++到PHP。

对这项技术

编写良好的OO代码是阅读、修改和调试的乐趣。通过掌握本书中介绍的对象设计的通用最佳实践来提升您的编码风格。这些清晰呈现的规则适用于任何OO语言,最大限度地提高代码库的清晰度和持久性,并提高您和您的团队的生产力。

关于这本书

对象设计风格指南提供了几十种编写面向对象代码的专业技术。在其中,经验丰富的开发人员Matthias Noback列出了构造对象、定义方法、更改和公开状态等方面的设计规则。所有示例都使用非常熟悉的伪代码,因此您可以按照自己喜欢的语言进行学习。在您探索对象设计的重要场景和挑战时,您将一个案例一个案例地研究,然后通过一个简单的web应用程序演示不同类型的对象如何有效地协同工作。

里面有什么

  • 广泛对象的通用设计规则

  • 测试对象的最佳实践

  • 常见对象类型的目录

  • 每个章节的练习来测试你的对象设计技能

成为VIP会员查看完整内容
0
64
小贴士
相关VIP内容
【干货书】《机器学习导论(第二版)》,348页pdf
专知会员服务
115+阅读 · 2020年6月16日
专知会员服务
123+阅读 · 2020年6月10日
专知会员服务
127+阅读 · 2020年5月18日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
185+阅读 · 2020年3月17日
专知会员服务
93+阅读 · 2020年3月4日
相关论文
A Modern Introduction to Online Learning
Francesco Orabona
14+阅读 · 2019年12月31日
Graph2Seq: Graph to Sequence Learning with Attention-based Neural Networks
Kun Xu,Lingfei Wu,Zhiguo Wang,Yansong Feng,Michael Witbrock,Vadim Sheinin
6+阅读 · 2018年12月3日
Image Captioning based on Deep Reinforcement Learning
Haichao Shi,Peng Li,Bo Wang,Zhenyu Wang
7+阅读 · 2018年9月13日
CIRL: Controllable Imitative Reinforcement Learning for Vision-based Self-driving
Xiaodan Liang,Tairui Wang,Luona Yang,Eric Xing
4+阅读 · 2018年7月10日
Stéphane Lathuilière,Benoit Massé,Pablo Mesejo,Radu Horaud
6+阅读 · 2018年4月23日
Avik Ray,Joe Neeman,Sujay Sanghavi,Sanjay Shakkottai
3+阅读 · 2018年2月24日
Amritanshu Agrawal,Wei Fu,Tim Menzies
3+阅读 · 2018年2月20日
Yan Zhang,Jonathon Hare,Adam Prügel-Bennett
10+阅读 · 2018年2月15日
David-Alexandre Beaupré,Guillaume-Alexandre Bilodeau,Nicolas Saunier
10+阅读 · 2018年1月29日
Top