Let $D$ be a $k$-regular bipartite tournament on $n$ vertices. We show that, for every $p$ with $2 \le p \le n/2-2$, $D$ has a cycle $C$ of length $2p$ such that $D \setminus C$ is hamiltonian unless $D$ is isomorphic to the special digraph $F_{4k}$. This statement was conjectured by Manoussakis, Song and Zhang [K. Zhang, Y. Manoussakis, and Z. Song. Complementary cycles containing a fixed arc in diregular bipartite tournaments. Discrete Mathematics, 133(1-3):325--328,1994]. In the same paper, the conjecture was proved for $p=2$ and more recently Bai, Li and He gave a proof for $p=3$ [Y. Bai, H. Li, and W. He. Complementary cycles in regular bipartite tournaments. Discrete Mathematics, 333:14--27, 2014].
翻译:以美元计价的双边双方定期比赛$k$, 以美元计价。 我们显示, 对于每1美元, $2 le p p p le n/2-2 美元,$1 美元周期为2p美元, 美元周期为2p美元, 也就是说, 美元=setminus C$是日本人, 除非美元对特别日记 $F ⁇ 4k 美元来说是无形态的。 本声明由Manoussakis, Song and Zhang[K. Zhang, Y. Manoussakis, and Z. Song. C补充周期中含有固定弧值的固定弧值的双边双方双方锦标赛。 Discrete Mamatics, 133(1-3):325-328, 1994]。 在同一论文中, 推论被证明为$p=2美元, 最近更是Bai, Li, 他给出了美元=3美元的证据[Y. Bai, H. 和 W. He. 补充周期在定期双边锦标赛中。 Discrematical, 2014:-27: