We propose a new task for sound event detection (SED): sound event triage (SET). The goal of SET is to detect an arbitrary number of high-priority event classes while allowing misdetections of low-priority event classes where the priority is given for each event class. In conventional methods of SED for targeting a specific sound event class, it is only possible to give priority to a single event class. Moreover, the level of priority is not adjustable, i.e, the conventional methods can use only types of target event class such as one-hot vector, as inputs. To flexibly control much information on the target event, the proposed SET exploits not only types of target sound but also the extent to which each target sound is detected with priority. To implement the detection of events with priority, we propose class-weighted training, in which loss functions and the network are stochastically weighted by the priority parameter of each class. As this is the first paper on SET, we particularly introduce an implementation of single target SET, which is a subtask of SET. Results of the experiments using the URBAN-SED dataset show that the proposed method of single target SET outperforms the conventional SED method by 8.70, 6.66, and 6.09 percentage points for ``air_conditioner,'' ``car_horn,'' and ``street_music,'' respectively, in terms of the intersection-based F-score. For the average score of classes, the proposed methods increase the intersection-based F-score by up to 3.37 percentage points compared with the conventional SED and other target-class-conditioned models.


翻译:我们提出一个新的任务,用于正确事件探测(SED):健全的事件分类(SED) 。SET的目标是检测任意数量的高优先事件类,同时允许对每个事件类优先的低优先事件类进行误测,同时允许对每个事件类优先进行误测。在SED针对特定无害事件类的传统方法中,我们只可能优先考虑一个单一事件类。此外,优先级别是不可调整的,即常规方法只能使用诸如一热矢量等目标事件类的类型,作为投入。为了灵活控制目标事件的大量信息,拟议的SET不仅利用目标类的类别,而且利用每个目标类的优先检测。为了优先执行对事件进行检测,我们建议了等级加权培训,其中损失函数和网络按每个事件类的优先参数进行随机加权。由于这是关于SET的第一篇文章,我们特别引入了单一目标类的SET,这是SET的子任务。 使用URBAN-S-S-RED的实验结果, 与S-S-RAD的平均值比值相比, 6.SBAN-S-ral-real 数据组的拟议方法显示S-real-real的S-real-real-real的S-real-request的Syal-real-real-real 6。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
53+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月6日
Arxiv
21+阅读 · 2020年10月11日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员