A central challenge in language models (LMs) is faithfulness hallucination: the generation of information unsubstantiated by input context. To study this problem, we propose Precise Information Control (PIC), a new task formulation that requires models to generate long-form outputs grounded in a provided set of short self-contained statements, without adding any unsupported ones. PIC includes a full setting that tests a model's ability to include exactly all input claims, and a partial setting that requires the model to selectively incorporate only relevant claims. We present PIC-Bench, a benchmark of eight long-form generation tasks (e.g., summarization, biography generation) adapted to the PIC setting, where LMs are supplied with well-formed, verifiable input claims. Our evaluation of a range of open and proprietary LMs on PIC-Bench reveals that, surprisingly, state-of-the-art LMs still hallucinate against user-provided input in over 70% of generations. To alleviate this lack of faithfulness, we introduce a post-training framework that uses a weakly supervised preference data construction method to train an 8B PIC-LM with stronger PIC ability--improving from 69.1% to 91.0% F1 in the full PIC setting. When integrated into end-to-end factual generation pipelines, PIC-LM improves exact match recall by 17.1% on ambiguous QA with retrieval, and factual precision by 30.5% on a birthplace fact-checking task, underscoring the potential of precisely grounded generation.
翻译:语言模型(LMs)面临的一个核心挑战是忠实性幻觉:生成未经输入上下文证实的信息。为研究此问题,我们提出精确信息控制(PIC),这是一种新的任务框架,要求模型基于一组提供的简短自包含陈述生成长文本输出,且不添加任何未经支持的陈述。PIC包含完整设定(测试模型准确包含所有输入主张的能力)和部分设定(要求模型选择性整合仅相关的主张)。我们提出PIC-Bench,这是一个包含八个长文本生成任务(如摘要、传记生成)的基准测试集,这些任务均适配至PIC框架,其中为语言模型提供格式规范、可验证的输入主张。通过对一系列开源和专有语言模型在PIC-Bench上的评估,我们发现令人惊讶的是:最先进的语言模型在超过70%的生成结果中仍会违背用户提供的输入产生幻觉。为缓解这种忠实性缺失,我们提出一种后训练框架,该框架采用弱监督偏好数据构建方法,训练出具有更强PIC能力的80亿参数PIC-LM——在完整PIC设定中将F1分数从69.1%提升至91.0%。当集成到端到端事实生成流程中时,PIC-LM在基于检索的模糊问答任务中将精确匹配召回率提升17.1%,在出生地事实核查任务中将事实精确度提升30.5%,这彰显了精确接地生成的实际潜力。