A set of vertices in a hypergraph is called an independent set if no hyperedge is completely contained inside the set. Given a hypergraph, computing its largest size independent set is an NP-hard problem. In this work, we study the independent set problem on hypergraphs in a natural semi-random family of instances. Our semi-random model is inspired by the Feige-Kilian model [FK01]. This popular model has also been studied in the works of [FK01, Ste17, MMT20] etc. McKenzie, Mehta, and Trevisan [MMT20] gave algorithms for computing independent sets in such a semi-random family of graphs. The algorithms by McKenzie et al. [MMT20] are based on rounding a "crude-SDP". We generalize their results and techniques to hypergraphs for an analogous family of hypergraph instances. Our algorithms are based on rounding the "crude-SDP" of McKenzie et al. [MMT20], augmented with "Lasserre/SoS like" hierarchy of constraints. Analogous to the results of McKenzie et al. [MMT20], we study the ranges of input parameters where we can recover the planted independent set or a large independent set.


翻译:高光谱中的一组脊椎是一个独立设置, 如果没有完全包含在集中的话, 则称为独立设置。 在高光谱中, 计算其最大大小的独立设置是一个NP- 硬问题 。 在这项工作中, 我们研究自然半随机环境体系中的高光谱问题 。 我们的半随机模型受Feige- Kilian 模型[ FK01] 的启发。 这个流行模型也在[ FK01, Ste17, MMT20] 等[ FKK01, Ste17, MMMMT20] 的作品中研究过。 McKenzie, Mehta, 和 Trevisan [MMMMT20] 的作品中, 给出了在这种半随机图组中独立计算数的算法。 由 McKenzie et al. [MMMT20] 的算法基于一个“ Lasserre/Sososocial ” 等独立参数, 和“ 我们的磁系” 的大规模输入序列序列。 我们的磁制成。 我们的磁系统和磁系的系统系统系统系统系统的系统可以回收结果。

0
下载
关闭预览

相关内容

最新《图神经网络知识图谱补全》综述论文
专知会员服务
155+阅读 · 2020年7月29日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
Arxiv
7+阅读 · 2018年8月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员