From politicians to podcast hosts, online platforms have systematically banned (``deplatformed'') influential users for breaking platform guidelines. Previous inquiries on the effectiveness of this intervention are inconclusive because 1) they consider only few deplatforming events; 2) they consider only overt engagement traces (e.g., likes and posts) but not passive engagement (e.g., views); 3) they do not consider all the potential places users impacted by the deplatforming event might migrate to. We address these limitations in a longitudinal, quasi-experimental study of 165 deplatforming events targeted at 101 influencers. We collect deplatforming events from Reddit posts and then manually curate the data, ensuring the correctness of a large dataset of deplatforming events. Then, we link these events to Google Trends and Wikipedia page views, platform-agnostic measures of online attention that capture the general public's interest in specific influencers. Through a difference-in-differences approach, we find that deplatforming reduces online attention toward influencers. After 12 months, we estimate that online attention toward deplatformed influencers is reduced by -63% (95% CI [-75%,-46%]) on Google and by -43% (95% CI [-57%,-24%]) on Wikipedia. Further, as we study over a hundred deplatforming events, we can analyze in which cases deplatforming is more or less impactful, revealing nuances about the intervention. Notably, we find that both permanent and temporary deplatforming reduce online attention toward influencers; Overall, this work contributes to the ongoing effort to map the effectiveness of content moderation interventions, driving platform governance away from speculation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
67+阅读 · 2022年4月13日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员