The advent of Large Language Models has revolutionized tasks across domains, including the automation of legal document analysis, a critical component of modern contract management systems. This paper presents a comprehensive implementation of LLM-enhanced metadata extraction for contract review, focusing on the automatic detection and annotation of salient legal clauses. Leveraging both the publicly available Contract Understanding Atticus Dataset (CUAD) and proprietary contract datasets, our work demonstrates the integration of advanced LLM methodologies with practical applications. We identify three pivotal elements for optimizing metadata extraction: robust text conversion, strategic chunk selection, and advanced LLM-specific techniques, including Chain of Thought (CoT) prompting and structured tool calling. The results from our experiments highlight the substantial improvements in clause identification accuracy and efficiency. Our approach shows promise in reducing the time and cost associated with contract review while maintaining high accuracy in legal clause identification. The results suggest that carefully optimized LLM systems could serve as valuable tools for legal professionals, potentially increasing access to efficient contract review services for organizations of all sizes.
翻译:大型语言模型的出现彻底改变了各领域的任务,包括法律文件分析的自动化——这是现代合同管理系统的关键组成部分。本文全面介绍了LLM增强的合同审查元数据提取实现,重点关注关键法律条款的自动检测与标注。通过利用公开可用的Contract Understanding Atticus Dataset (CUAD)和专有合同数据集,我们的工作展示了先进LLM方法与实际应用的整合。我们确定了优化元数据提取的三个关键要素:鲁棒的文本转换、策略性文本块选择,以及先进的LLM专用技术(包括思维链提示和结构化工具调用)。实验结果表明,该方法在条款识别准确率和效率方面均有显著提升。我们的方法有望减少合同审查所需的时间和成本,同时保持法律条款识别的高准确率。研究结果表明,经过精心优化的LLM系统可成为法律专业人士的有价值工具,可能为各种规模的组织提供更高效的合同审查服务。