One challenge of motion generation using robot learning from demonstration techniques is that human demonstrations follow a distribution with multiple modes for one task query. Previous approaches fail to capture all modes or tend to average modes of the demonstrations and thus generate invalid trajectories. The other difficulty is the small number of demonstrations that cannot cover the entire working space. To overcome this problem, a motion generation model with extrapolation ability is needed. Previous works restrict task queries as local frames and learn representations in local frames. We propose a model to solve both problems. For multiple modes, we suggest to learn local latent representations of motion trajectories with a density estimation method based on real-valued non-volume preserving (RealNVP) transformations that provides a set of powerful, stably invertible, and learnable transformations. To improve the extrapolation ability, we propose to shift the attention of the robot from one local frame to another during the task execution. In experiments, we consider the docking problem used also in previous works where a trajectory has to be generated to connect two dockers without collision. We increase complexity of the task and show that the proposed method outperforms other approaches. In addition, we evaluate the approach in real robot experiments.


翻译:使用机器人从演示技术中学习的机器人产生运动能力的一个挑战是,人类演示遵循多种模式的分布方式,用于一个任务查询。以前的方法未能捕捉所有模式,或倾向于演示的平均模式,从而产生无效的轨迹。另一个困难是无法覆盖整个工作空间的少量演示。为了克服这一问题,需要一个具有外推能力的动作生成模型。以前的工作限制任务查询,将其作为本地框架,并在当地框架中学习演示。我们提出了一个解决这两个问题的模型。对于多种模式,我们建议学习运动轨迹的局部潜在潜在表现,以基于实际估价的非数量保护(RealNVP)变形的密度估计方法,提供一套强力、可刺穿、不可翻转和可学习的变形。为了提高外推法能力,我们提议在任务执行期间将机器人的注意力从一个本地框架转移到另一个框架。在试验中,我们考虑到在先前的工程中使用的对接问题,即必须产生一条轨迹将两个码头连接在一起而没有碰撞。我们增加了任务的复杂性,并显示拟议的方法超越了其他方法。此外,我们评估了实际的实验方法。

0
下载
关闭预览

相关内容

【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Paraphrase Generation with Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年3月10日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关VIP内容
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Top
微信扫码咨询专知VIP会员