We prove that any graph excluding $K_r$ as a minor has can be partitioned into clusters of diameter at most $\Delta$ while removing at most $O(r/\Delta)$ fraction of the edges. This improves over the results of Fakcharoenphol and Talwar, who building on the work of Klein, Plotkin and Rao gave a partitioning that required to remove $O(r^2/\Delta)$ fraction of the edges. Our result is obtained by a new approach to relate the topological properties (excluding a minor) of a graph to its geometric properties (the induced shortest path metric). Specifically, we show that techniques used by Andreae in his investigation of the cops-and-robbers game on excluded-minor graphs can be used to construct padded decompositions of the metrics induced by such graphs. In particular, we get probabilistic partitions with padding parameter $O(r)$ and strong-diameter partitions with padding parameter $O(r^2)$ for $K_r$-free graphs, padding $O(k)$ for graphs with treewidth $k$, and padding $O(\log g)$ for graphs with genus $g$.
翻译:我们证明,任何将K$_r美元作为未成年人的图表都可以被分割成直径组,最多为$\Delta美元,而最多去除边缘部分的O(r/\Delta)美元。这比Fakcharoenphol和Talwar的结果有所改进,Fakcharobberpol和Talwar在Klein、Plotkin和Rao的作品上加了一个分隔,以去除边缘部分的O(r_2/\Delta)美元。我们的结果是通过一种新办法获得的,将图表的表层属性(不包括一个小)与其几何特性(引出的最短路径度度度度度度度度度度指标)联系起来。具体地说,我们显示,Andreae在调查排除微度图上的警察与鼠标游戏时所使用的技术可以用来构建由这些图形引导引的测量度的分解层。特别是,我们用斜度参数$O(r)美元和强直径分区分区的分区,以标参数为$O(r_2美元),以K_r-rwx美元,以图制成美元。