In this work we consider regularized Wasserstein barycenters (average in Wasserstein distance) in Fourier basis. We prove that random Fourier parameters of the barycenter converge to some Gaussian random vector by distribution. The convergence rate has been derived in finite-sample case with explicit dependence on measures count ($n$) and the dimension of parameters ($p$).


翻译:在这项工作中,我们把正规化的瓦森斯坦(Wasserstein)百货中心(瓦森斯坦距离平均)放在Fourier的基础上。我们证明,该百货中心的随机Fourier参数通过分布方式与某些高西亚随机矢量相汇而成。 趋同率是在有限样本中得出的,明显依赖计量数($)和参数的维度($美元 ) 。

0
下载
关闭预览

相关内容

Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2018年3月12日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员