Traditional supervised learning aims to train a classifier in the closed-set world, where training and test samples share the same label space. In this paper, we target a more challenging and realistic setting: open-set learning (OSL), where there exist test samples from the classes that are unseen during training. Although researchers have designed many methods from the algorithmic perspectives, there are few methods that provide generalization guarantees on their ability to achieve consistent performance on different training samples drawn from the same distribution. Motivated by the transfer learning and probably approximate correct (PAC) theory, we make a bold attempt to study OSL by proving its generalization error-given training samples with size n, the estimation error will get close to order O_p(1/\sqrt{n}). This is the first study to provide a generalization bound for OSL, which we do by theoretically investigating the risk of the target classifier on unknown classes. According to our theory, a novel algorithm, called auxiliary open-set risk (AOSR) is proposed to address the OSL problem. Experiments verify the efficacy of AOSR. The code is available at github.com/Anjin-Liu/Openset_Learning_AOSR.


翻译:传统监督的学习目标是在封闭的世界中培训一个分类者,培训和测试样品都具有相同的标签空间。在本文中,我们的目标是一个更具挑战性和更现实的环境:开放的学习(OSL),在培训期间看不到的班级中存在测试样品。虽然研究人员从算法角度设计了许多方法,但很少有方法能够保证他们能够在同一分布的不同培训样品上取得一致的性能。根据我们的理论,我们提议采用一种新颖的算法,即所谓的辅助开放风险(AOSR)来解决OSL问题。实验将核查AOSR的功效。这个代码可在Github-Star.com/Anjin-Lset.

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
44+阅读 · 2019年10月29日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
浅谈主动学习(Active Learning)
凡人机器学习
30+阅读 · 2020年6月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年8月31日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
44+阅读 · 2019年10月29日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
浅谈主动学习(Active Learning)
凡人机器学习
30+阅读 · 2020年6月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Arxiv
0+阅读 · 2021年8月31日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Arxiv
11+阅读 · 2018年7月8日
Top
微信扫码咨询专知VIP会员