Violations of the positivity assumption can render conventional causal estimands unidentifiable, including the average treatment effect (ATE), the average treatment effect on the treated (ATT), and the average treatment effect on the controls (ATC). Shifting the inferential focus to their alternative counterparts -- the weighted ATE (WATE), the weighted ATT (WATT), and the weighted ATC (WATC) -- offers valuable insights into treatment effects while preserving internal validity. In this tutorial, we provide a comprehensive review of recent advances in propensity score (PS) weighting methods, along with practical guidance on how to select a primary target estimand (while other estimands serve as supplementary analyses), implement the corresponding PS-weighted estimators, and conduct post-weighting diagnostic assessments. The tutorial is accompanied by a user-friendly R package, ChiPS. We demonstrate the pertinence of various estimators through extensive simulation studies. We illustrate the flow of the tutorial on two real-world case studies: (i) Effect of smoking on blood lead level using data from the 2007-2008 National Health and Nutrition Examination Survey (NHANES); and (ii) Impact of history of sex work on HIV status among transgender women in South Africa.


翻译:正性假设的违反可能导致传统因果估计量不可识别,包括平均处理效应(ATE)、处理组平均处理效应(ATT)与控制组平均处理效应(ATC)。将推断焦点转向其替代指标——加权平均处理效应(WATE)、加权处理组平均处理效应(WATT)与加权控制组平均处理效应(WATC)——能够在保持内部效度的同时,为处理效应提供有价值的洞见。本教程系统综述了倾向得分(PS)加权方法的最新进展,并提供实践指导,涵盖如何选择主要目标估计量(其他估计量作为补充分析)、实施相应的PS加权估计器,以及进行加权后诊断评估。教程配套提供用户友好的R软件包ChiPS。通过大量模拟研究,我们验证了各类估计器的适用性。教程以两个真实案例研究展示分析流程:(i)基于2007-2008年美国国家健康与营养调查(NHANES)数据,分析吸烟对血铅水平的影响;(ii)评估南非跨性别女性中性工作史对HIV感染状况的影响。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员