While researchers commonly use the bootstrap for statistical inference, many of us have realized that the standard bootstrap, in general, does not work for Chatterjee's rank correlation. In this paper, we provide proof of this issue under an additional independence assumption, and complement our theory with simulation evidence for general settings. Chatterjee's rank correlation thus falls into a category of statistics that are asymptotically normal but bootstrap inconsistent. Valid inferential methods in this case are Chatterjee's original proposal (for testing independence) and Lin and Han (2022)'s analytic asymptotic variance estimator (for more general purposes).
翻译:关于Chatterjee秩相关性的自助法失效问题
翻译后的摘要:
研究人员通常使用自助法进行统计推断,但我们许多人已经意识到,一般情况下,标准的自助法不能用于Chatterjee秩相关性。在本文中,我们在额外的独立性假设下证明了这个问题,并通过模拟证据来补充我们的理论。因此,Chatterjee秩相关性属于一种渐近正常但自助法不一致的统计量类别。在这种情况下,有效的推断方法是Chatterjee的原始建议(用于独立性检验)和Lin and Han (2022)的分析渐近方差估计器(用于更一般的目的)。