We present a set of experiments to demonstrate that deep recurrent neural networks (RNNs) learn internal representations that capture soft hierarchical notions of syntax from highly varied supervision. We consider four syntax tasks at different depths of the parse tree; for each word, we predict its part of speech as well as the first (parent), second (grandparent) and third level (great-grandparent) constituent labels that appear above it. These predictions are made from representations produced at different depths in networks that are pretrained with one of four objectives: dependency parsing, semantic role labeling, machine translation, or language modeling. In every case, we find a correspondence between network depth and syntactic depth, suggesting that a soft syntactic hierarchy emerges. This effect is robust across all conditions, indicating that the models encode significant amounts of syntax even in the absence of an explicit syntactic training supervision.

3
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html

It is always well believed that parsing an image into constituent visual patterns would be helpful for understanding and representing an image. Nevertheless, there has not been evidence in support of the idea on describing an image with a natural-language utterance. In this paper, we introduce a new design to model a hierarchy from instance level (segmentation), region level (detection) to the whole image to delve into a thorough image understanding for captioning. Specifically, we present a HIerarchy Parsing (HIP) architecture that novelly integrates hierarchical structure into image encoder. Technically, an image decomposes into a set of regions and some of the regions are resolved into finer ones. Each region then regresses to an instance, i.e., foreground of the region. Such process naturally builds a hierarchal tree. A tree-structured Long Short-Term Memory (Tree-LSTM) network is then employed to interpret the hierarchal structure and enhance all the instance-level, region-level and image-level features. Our HIP is appealing in view that it is pluggable to any neural captioning models. Extensive experiments on COCO image captioning dataset demonstrate the superiority of HIP. More remarkably, HIP plus a top-down attention-based LSTM decoder increases CIDEr-D performance from 120.1% to 127.2% on COCO Karpathy test split. When further endowing instance-level and region-level features from HIP with semantic relation learnt through Graph Convolutional Networks (GCN), CIDEr-D is boosted up to 130.6%.

0
5
下载
预览

Recent progress has been made in using attention based encoder-decoder framework for image and video captioning. Most existing decoders apply the attention mechanism to every generated word including both visual words (e.g., "gun" and "shooting") and non-visual words (e.g. "the", "a"). However, these non-visual words can be easily predicted using natural language model without considering visual signals or attention. Imposing attention mechanism on non-visual words could mislead and decrease the overall performance of visual captioning. Furthermore, the hierarchy of LSTMs enables more complex representation of visual data, capturing information at different scales. To address these issues, we propose a hierarchical LSTM with adaptive attention (hLSTMat) approach for image and video captioning. Specifically, the proposed framework utilizes the spatial or temporal attention for selecting specific regions or frames to predict the related words, while the adaptive attention is for deciding whether to depend on the visual information or the language context information. Also, a hierarchical LSTMs is designed to simultaneously consider both low-level visual information and high-level language context information to support the caption generation. We initially design our hLSTMat for video captioning task. Then, we further refine it and apply it to image captioning task. To demonstrate the effectiveness of our proposed framework, we test our method on both video and image captioning tasks. Experimental results show that our approach achieves the state-of-the-art performance for most of the evaluation metrics on both tasks. The effect of important components is also well exploited in the ablation study.

0
5
下载
预览

Most attention-based image captioning models attend to the image once per word. However, attending once per word is rigid and is easy to miss some information. Attending more times can adjust the attention position, find the missing information back and avoid generating the wrong word. In this paper, we show that attending more times per word can gain improvements in the image captioning task. We propose a flexible two-LSTM merge model to make it convenient to encode more attentions than words. Our captioning model uses two LSTMs to encode the word sequence and the attention sequence respectively. The information of the two LSTMs and the image feature are combined to predict the next word. Experiments on the MSCOCO caption dataset show that our method outperforms the state-of-the-art. Using bottom up features and self-critical training method, our method gets BLEU-4, METEOR, ROUGE-L and CIDEr scores of 0.381, 0.283, 0.580 and 1.261 on the Karpathy test split.

0
3
下载
预览

In recent years, the sequence-to-sequence learning neural networks with attention mechanism have achieved great progress. However, there are still challenges, especially for Neural Machine Translation (NMT), such as lower translation quality on long sentences. In this paper, we present a hierarchical deep neural network architecture to improve the quality of long sentences translation. The proposed network embeds sequence-to-sequence neural networks into a two-level category hierarchy by following the coarse-to-fine paradigm. Long sentences are input by splitting them into shorter sequences, which can be well processed by the coarse category network as the long distance dependencies for short sentences is able to be handled by network based on sequence-to-sequence neural network. Then they are concatenated and corrected by the fine category network. The experiments shows that our method can achieve superior results with higher BLEU(Bilingual Evaluation Understudy) scores, lower perplexity and better performance in imitating expression style and words usage than the traditional networks.

0
3
下载
预览

Seq2seq models based on Recurrent Neural Networks (RNNs) have recently received a lot of attention in the domain of Semantic Parsing for Question Answering. While in principle they can be trained directly on pairs (natural language utterances, logical forms), their performance is limited by the amount of available data. To alleviate this problem, we propose to exploit various sources of prior knowledge: the well-formedness of the logical forms is modeled by a weighted context-free grammar; the likelihood that certain entities present in the input utterance are also present in the logical form is modeled by weighted finite-state automata. The grammar and automata are combined together through an efficient intersection algorithm to form a soft guide ("background") to the RNN. We test our method on an extension of the Overnight dataset and show that it not only strongly improves over an RNN baseline, but also outperforms non-RNN models based on rich sets of hand-crafted features.

0
3
下载
预览

Contextual word representations derived from pre-trained bidirectional language models (biLMs) have recently been shown to provide significant improvements to the state of the art for a wide range of NLP tasks. However, many questions remain as to how and why these models are so effective. In this paper, we present a detailed empirical study of how the choice of neural architecture (e.g. LSTM, CNN, or self attention) influences both end task accuracy and qualitative properties of the representations that are learned. We show there is a tradeoff between speed and accuracy, but all architectures learn high quality contextual representations that outperform word embeddings for four challenging NLP tasks. Additionally, all architectures learn representations that vary with network depth, from exclusively morphological based at the word embedding layer through local syntax based in the lower contextual layers to longer range semantics such coreference at the upper layers. Together, these results suggest that unsupervised biLMs, independent of architecture, are learning much more about the structure of language than previously appreciated.

0
20
下载
预览

Recently, neural machine translation (NMT) has emerged as a powerful alternative to conventional statistical approaches. However, its performance drops considerably in the presence of morphologically rich languages (MRLs). Neural engines usually fail to tackle the large vocabulary and high out-of-vocabulary (OOV) word rate of MRLs. Therefore, it is not suitable to exploit existing word-based models to translate this set of languages. In this paper, we propose an extension to the state-of-the-art model of Chung et al. (2016), which works at the character level and boosts the decoder with target-side morphological information. In our architecture, an additional morphology table is plugged into the model. Each time the decoder samples from a target vocabulary, the table sends auxiliary signals from the most relevant affixes in order to enrich the decoder's current state and constrain it to provide better predictions. We evaluated our model to translate English into German, Russian, and Turkish as three MRLs and observed significant improvements.

0
3
下载
预览

While neural machine translation (NMT) models provide improved translation quality in an elegant, end-to-end framework, it is less clear what they learn about language. Recent work has started evaluating the quality of vector representations learned by NMT models on morphological and syntactic tasks. In this paper, we investigate the representations learned at different layers of NMT encoders. We train NMT systems on parallel data and use the trained models to extract features for training a classifier on two tasks: part-of-speech and semantic tagging. We then measure the performance of the classifier as a proxy to the quality of the original NMT model for the given task. Our quantitative analysis yields interesting insights regarding representation learning in NMT models. For instance, we find that higher layers are better at learning semantics while lower layers tend to be better for part-of-speech tagging. We also observe little effect of the target language on source-side representations, especially with higher quality NMT models.

0
3
下载
预览

Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.

0
20
下载
预览

Sequential recommendation is one of fundamental tasks for Web applications. Previous methods are mostly based on Markov chains with a strong Markov assumption. Recently, recurrent neural networks (RNNs) are getting more and more popular and has demonstrated its effectiveness in many tasks. The last hidden state is usually applied as the sequence's representation to make recommendation. Benefit from the natural characteristics of RNN, the hidden state is a combination of long-term dependency and short-term interest to some degrees. However, the monotonic temporal dependency of RNN impairs the user's short-term interest. Consequently, the hidden state is not sufficient to reflect the user's final interest. In this work, to deal with this problem, we propose a Hierarchical Contextual Attention-based GRU (HCA-GRU) network. The first level of HCA-GRU is conducted on the input. We construct a contextual input by using several recent inputs based on the attention mechanism. This can model the complicated correlations among recent items and strengthen the hidden state. The second level is executed on the hidden state. We fuse the current hidden state and a contextual hidden state built by the attention mechanism, which leads to a more suitable user's overall interest. Experiments on two real-world datasets show that HCA-GRU can effectively generate the personalized ranking list and achieve significant improvement.

0
5
下载
预览
小贴士
相关论文
Hierarchy Parsing for Image Captioning
Ting Yao,Yingwei Pan,Yehao Li,Tao Mei
5+阅读 · 2019年9月10日
Hierarchical LSTMs with Adaptive Attention for Visual Captioning
Jingkuan Song,Xiangpeng Li,Lianli Gao,Heng Tao Shen
5+阅读 · 2018年12月26日
Attend More Times for Image Captioning
Jiajun Du,Yu Qin,Hongtao Lu,Yonghua Zhang
3+阅读 · 2018年12月8日
A Hierarchical Neural Network for Sequence-to-Sequences Learning
Si Zuo,Zhimin Xu
3+阅读 · 2018年11月23日
Symbolic Priors for RNN-based Semantic Parsing
Chunyang Xiao,Marc Dymetman,Claire Gardent
3+阅读 · 2018年9月20日
Dissecting Contextual Word Embeddings: Architecture and Representation
Matthew E. Peters,Mark Neumann,Luke Zettlemoyer,Wen-tau Yih
20+阅读 · 2018年8月27日
Yonatan Belinkov,Lluís Màrquez,Hassan Sajjad,Nadir Durrani,Fahim Dalvi,James Glass
3+阅读 · 2018年1月23日
Parth Shah,Vishvajit Bakarola,Supriya Pati
20+阅读 · 2018年1月17日
Qiang Cui,Shu Wu,Yan Huang,Liang Wang
5+阅读 · 2017年12月7日
Top