Emerging non-volatile memory (NVM)-based Computing-in-Memory (CiM) architectures show substantial promise in accelerating deep neural networks (DNNs) due to their exceptional energy efficiency. However, NVM devices are prone to device variations. Consequently, the actual DNN weights mapped to NVM devices can differ considerably from their targeted values, inducing significant performance degradation. Many existing solutions aim to optimize average performance amidst device variations, which is a suitable strategy for general-purpose conditions. However, the worst-case performance that is crucial for safety-critical applications is largely overlooked in current research. In this study, we define the problem of pinpointing the worst-case performance of CiM DNN accelerators affected by device variations. Additionally, we introduce a strategy to identify a specific pattern of the device value deviations in the complex, high-dimensional value deviation space, responsible for this worst-case outcome. Our findings reveal that even subtle device variations can precipitate a dramatic decline in DNN accuracy, posing risks for CiM-based platforms in supporting safety-critical applications. Notably, we observe that prevailing techniques to bolster average DNN performance in CiM accelerators fall short in enhancing worst-case scenarios. In light of this issue, we propose a novel worst-case-aware training technique named A-TRICE that efficiently combines adversarial training and noise-injection training with right-censored Gaussian noise to improve the DNN accuracy in the worst-case scenarios. Our experimental results demonstrate that A-TRICE improves the worst-case accuracy under device variations by up to 33%.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员