The vulnerability of cyclists, exacerbated by the rising popularity of faster e-bikes, motivates adapting automotive perception technologies for bicycle safety. We use our multi-sensor 'SenseBike' research platform to develop and evaluate a 3D LiDAR segmentation approach tailored to bicycles. To bridge the automotive-to-bicycle domain gap, we introduce the novel BikeScenes-lidarseg Dataset, comprising 3021 consecutive LiDAR scans around the university campus of the TU Delft, semantically annotated for 29 dynamic and static classes. By evaluating model performance, we demonstrate that fine-tuning on our BikeScenes dataset achieves a mean Intersection-over-Union (mIoU) of 63.6%, significantly outperforming the 13.8% obtained with SemanticKITTI pre-training alone. This result underscores the necessity and effectiveness of domain-specific training. We highlight key challenges specific to bicycle-mounted, hardware-constrained perception systems and contribute the BikeScenes dataset as a resource for advancing research in cyclist-centric LiDAR segmentation.


翻译:随着速度更快的电动自行车日益普及,骑行者的脆弱性愈发凸显,这促使我们将汽车感知技术应用于自行车安全领域。我们利用多传感器研究平台'SenseBike',开发并评估了一种专为自行车定制的三维激光雷达分割方法。为弥合汽车与自行车领域的差异,我们提出了新颖的BikeScenes-lidarseg数据集,该数据集包含代尔夫特理工大学校园周边的3021个连续激光雷达扫描帧,并对29个动态与静态类别进行了语义标注。通过模型性能评估,我们证明在BikeScenes数据集上进行微调可获得63.6%的平均交并比(mIoU),显著优于仅使用SemanticKITTI预训练所得的13.8%。这一结果凸显了领域特定训练的必要性与有效性。我们重点阐述了自行车载硬件受限感知系统特有的关键挑战,并将BikeScenes数据集作为推动以骑行者为中心的激光雷达分割研究的资源予以公开。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
23+阅读 · 2023年3月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员