Reducing methane emissions is essential for mitigating global warming. To attribute methane emissions to their sources, a comprehensive dataset of methane source infrastructure is necessary. Recent advancements with deep learning on remotely sensed imagery have the potential to identify the locations and characteristics of methane sources, but there is a substantial lack of publicly available data to enable machine learning researchers and practitioners to build automated mapping approaches. To help fill this gap, we construct a multi-sensor dataset called METER-ML containing 86,625 georeferenced NAIP, Sentinel-1, and Sentinel-2 images in the U.S. labeled for the presence or absence of methane source facilities including concentrated animal feeding operations, coal mines, landfills, natural gas processing plants, oil refineries and petroleum terminals, and wastewater treatment plants. We experiment with a variety of models that leverage different spatial resolutions, spatial footprints, image products, and spectral bands. We find that our best model achieves an area under the precision recall curve of 0.915 for identifying concentrated animal feeding operations and 0.821 for oil refineries and petroleum terminals on an expert-labeled test set, suggesting the potential for large-scale mapping. We make METER-ML freely available at https://stanfordmlgroup.github.io/projects/meter-ml/ to support future work on automated methane source mapping.
翻译:减少甲烷排放对于减缓全球变暖至关重要。为了将甲烷排放归属于其来源,有必要建立甲烷源基础设施的综合数据集。最近通过对遥感图像的深层学习而取得的进展有可能确定甲烷源的位置和特性,但大量缺乏公开数据,使机器学习研究人员和从业人员能够建立自动绘图方法。为了帮助填补这一空白,我们建造了一个称为METER-ML的多传感器数据集,该数据集包含86,625个地理参照NAIP、哨兵-1和哨兵-2的图像。 该数据集的标签是是否存在甲烷源设施,包括集中动物喂养作业、煤矿、垃圾填埋场、天然气加工厂、炼油厂和石油终端以及废水处理厂。我们试验了各种模型,利用不同的空间分辨率、空间足迹、图像产品和光谱带。我们发现,我们的最佳模型在专家标签测试集成的动物喂养作业和石油炼油厂和石油终端中达到了0.821的精确回溯曲线下的一个区域,在专家标签测试数据集中标出了大规模测绘的潜力。我们用MITERMMLMM/MERMERMERM/Sirmumromaisumstomatomas