Universal domain adaptation (UDA) aims to transfer the knowledge of common classes from the source domain to the target domain without any prior knowledge on the label set, which requires distinguishing in the target domain the unknown samples from the known ones. Recent methods usually focused on categorizing a target sample into one of the source classes rather than distinguishing known and unknown samples, which ignores the inter-sample affinity between known and unknown samples and may lead to suboptimal performance. Aiming at this issue, we propose a novel UDA framework where such inter-sample affinity is exploited. Specifically, we introduce a knowability-based labeling scheme which can be divided into two steps: 1) Knowability-guided detection of known and unknown samples based on the intrinsic structure of the neighborhoods of samples, where we leverage the first singular vectors of the affinity matrices to obtain the knowability of every target sample. 2) Label refinement based on neighborhood consistency to relabel the target samples, where we refine the labels of each target sample based on its neighborhood consistency of predictions. Then, auxiliary losses based on the two steps are used to reduce the inter-sample affinity between the unknown and the known target samples. Finally, experiments on four public datasets demonstrate that our method significantly outperforms existing state-of-the-art methods.


翻译:通用域适应(UDA)旨在将共同类别知识从源域向目标域转移,而无需事先对标签集有任何了解,这就要求在目标域中区分未知样本和已知样本。最近的方法通常侧重于将目标样本分类为来源类别之一,而不是区分已知和未知样本,忽视已知和未知样本之间的相近性,可能导致不最佳性能。为了解决这个问题,我们提议了一个新的UDA框架,在利用目标样本时,利用这种相互亲近性。具体地说,我们采用了基于知识的标签办法,可以分为两个步骤:1)根据样本周围的内在结构,对已知和未知样本进行有意识的检测,我们利用亲近性矩阵的第一个单一矢量获得每个目标样本的可了解性,2)根据附近的一致性对目标样本进行重新标签,我们根据社区预测的一致性改进每个目标样本的标签。然后,根据两个步骤进行辅助性损失,可以分为两个步骤:1)根据样本的内在结构对已知和未知的样本进行有意识的检测。最后,我们用已知的方法展示了已知的四种未知和已知的样本之间的现有方法。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
29+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
29+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员