A vast majority of mass spectrometry data remains uncharacterized, leaving much of its biological and chemical information untapped. Recent advances in machine learning have begun to address this gap, particularly for tasks such as spectral identification in tandem mass spectrometry data. Here, we present the latest generation of LSM-MS2, a large-scale deep learning foundation model trained on millions of spectra to learn a semantic chemical space. LSM-MS2 achieves state-of-the-art performance in spectral identification, improving on existing methods by 30% in accuracy of identifying challenging isomeric compounds, yielding 42% more correct identifications in complex biological samples, and maintaining robustness under low-concentration conditions. Furthermore, LSM-MS2 produces rich spectral embeddings that enable direct biological interpretation from minimal downstream data, successfully differentiating disease states and predicting clinical outcomes across diverse translational applications.
翻译:绝大多数质谱数据仍未被表征,导致其蕴含的大量生物学与化学信息未被充分利用。机器学习的最新进展已开始填补这一空白,特别是在串联质谱数据的谱图鉴定等任务中。本文介绍了新一代LSM-MS2模型,这是一个基于数百万谱图训练的大规模深度学习基础模型,旨在学习语义化的化学空间。LSM-MS2在谱图鉴定中实现了最先进的性能:在具有挑战性的同分异构体化合物鉴定准确率上较现有方法提升30%,在复杂生物样本中正确鉴定数量增加42%,并在低浓度条件下保持稳健性。此外,LSM-MS2生成的丰富谱图嵌入向量能够基于少量下游数据直接进行生物学解读,成功实现了跨多种转化应用场景的疾病状态区分与临床结局预测。