Session-based recommendation (SBR) is a challenging task, which aims at recommending items based on anonymous behavior sequences. Most existing SBR studies model the user preferences based only on the current session while neglecting the item-transition information from the other sessions, which suffer from the inability of modeling the complicated item-transition pattern. To address the limitations, we introduce global item-transition information to strength the modeling of the dynamic item-transition. For fully exploiting the global item-transition information, two ways of exploring global information for SBR are studied in this work. Specifically, we first propose a basic GNN-based framework (BGNN), which solely uses session-level item-transition information on session graph. Based on BGNN, we propose a novel approach, called Session-based Recommendation with Global Information (SRGI), which infers the user preferences via fully exploring global item-transitions over all sessions from two different perspectives: (i) Fusion-based Model (SRGI-FM), which recursively incorporates the neighbor embeddings of each node on global graph into the learning process of session level item representation; and (ii) Constrained-based Model (SRGI-CM), which treats the global-level item-transition information as a constraint to ensure the learned item embeddings are consistent with the global item-transition. Extensive experiments conducted on three popular benchmark datasets demonstrate that both SRGI-FM and SRGI-CM outperform the state-of-the-art methods consistently.


翻译:以会议为基础的建议(SBR)是一项具有挑战性的任务,其目的在于根据匿名行为顺序推荐项目; 多数现有的SBR研究模式仅以本届会议为基础,而忽略其他会议的项目过渡信息,因为无法模拟复杂的项目过渡模式,而其他会议的项目过渡信息因无法模拟复杂的项目过渡模式而受到影响; 为解决这些局限性,我们引入全球项目过渡信息,以强化动态项目过渡模式的建模; 为充分利用全球项目过渡信息,在这项工作中研究探索全球项目过渡信息的两个方法。 具体地说,我们首先提议一个基于全球NNN(BNNN)的基本框架(BGNNN),仅使用届会一级项目过渡信息,而忽视其他会议的项目过渡信息; 在BGNNNT的基础上,我们提出一种新颖的方法,称为与全球信息信息过渡模式(SRGI),从两个不同角度来推断用户的倾向,即充分探索全球项目过渡模式(SRGM-FM),在届会级的学习过程中,将每个节点的每个节的相嵌纳入全球图的学习过程的学习过程。 (二) 以全球已了解的GSR-GRMMIBIBIBI) 标准为持续的模型,在进行的全球标准的基级的模型,其为持续的基底基级的基级的基级的基级的基级的基级的基级的基级的基级的基级的基级的基级的基级数据。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
近期必读的六篇 ICLR 2021【推荐系统】相关投稿论文
专知会员服务
47+阅读 · 2020年10月13日
【综述笔记】Graph Neural Networks in Recommender Systems
图与推荐
5+阅读 · 2020年12月8日
Context / Sequential / Session RS的区别
机器学习与推荐算法
3+阅读 · 2020年6月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
Arxiv
15+阅读 · 2021年6月27日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
20+阅读 · 2019年11月23日
Next Item Recommendation with Self-Attention
Arxiv
5+阅读 · 2018年8月25日
Arxiv
12+阅读 · 2018年1月28日
Arxiv
5+阅读 · 2017年11月13日
VIP会员
相关VIP内容
近期必读的六篇 ICLR 2021【推荐系统】相关投稿论文
专知会员服务
47+阅读 · 2020年10月13日
相关论文
Top
微信扫码咨询专知VIP会员